MHB Prove These 3 Statements About A Matrix: Rank of Adjoint

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix rank
Yankel
Messages
390
Reaction score
0
Hello all

I need to prove these 3 statements, and I don't know how to start...

A is an nxn matrix:

1) if rank(A)=n then rank(adj(A))=n
2) if rank(A)=n-1 then rank(adj(A))=1
2) if rank(A)<n-1 then rank(adj(A))=0

thanks...:confused:
 
Physics news on Phys.org
Yankel said:
Hello all

I need to prove these 3 statements, and I don't know how to start...

A is an nxn matrix:

1) if rank(A)=n then rank(adj(A))=n
2) if rank(A)=n-1 then rank(adj(A))=1
2) if rank(A)<n-1 then rank(adj(A))=0

thanks...:confused:

Write A in Jordan Normal Form:
$$A = P J P^{-1}$$
where P is an invertible matrix and J is an upper triangular matrix with its eigenvalues on its diagonal, and more specifically J consists of Jordan blocks.

If rank(A)=n-1, then J can be written with a row consisting of zeroes, a column consisting of zeroes, and the corresponding minor will be non-zero.

If rank(A)<n-1, then J can be written with at least two rows consisting of zeroes, and at least two columns consisting of zeroes.
 
Back
Top