MHB Prove These 3 Statements About A Matrix: Rank of Adjoint

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Matrix rank
Yankel
Messages
390
Reaction score
0
Hello all

I need to prove these 3 statements, and I don't know how to start...

A is an nxn matrix:

1) if rank(A)=n then rank(adj(A))=n
2) if rank(A)=n-1 then rank(adj(A))=1
2) if rank(A)<n-1 then rank(adj(A))=0

thanks...:confused:
 
Physics news on Phys.org
Yankel said:
Hello all

I need to prove these 3 statements, and I don't know how to start...

A is an nxn matrix:

1) if rank(A)=n then rank(adj(A))=n
2) if rank(A)=n-1 then rank(adj(A))=1
2) if rank(A)<n-1 then rank(adj(A))=0

thanks...:confused:

Write A in Jordan Normal Form:
$$A = P J P^{-1}$$
where P is an invertible matrix and J is an upper triangular matrix with its eigenvalues on its diagonal, and more specifically J consists of Jordan blocks.

If rank(A)=n-1, then J can be written with a row consisting of zeroes, a column consisting of zeroes, and the corresponding minor will be non-zero.

If rank(A)<n-1, then J can be written with at least two rows consisting of zeroes, and at least two columns consisting of zeroes.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top