Prove Triangle Inequality: $\sqrt{2}\sin A-2\sin B+\sin C=0$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Triangle
Click For Summary
SUMMARY

The triangle inequality condition $\sqrt{2}\sin A - 2\sin B + \sin C = 0$ leads to the conclusion that $\dfrac{3}{\sin A} + \dfrac{\sqrt{2}}{\sin C} \ge 2(\sqrt{3}+1)$ must always hold true for triangle $ABC$. This relationship is established under the premise that the angles satisfy the given sine equation. Notably, equality is achieved specifically when angle $A$ is $\dfrac{\pi}{3}$ and angle $C$ is $\dfrac{\pi}{4}$.

PREREQUISITES
  • Understanding of triangle properties and angles
  • Knowledge of trigonometric identities and sine functions
  • Familiarity with inequalities in mathematical proofs
  • Basic understanding of angle measures in radians
NEXT STEPS
  • Study the implications of the Law of Sines in triangle inequalities
  • Explore advanced trigonometric identities and their applications
  • Investigate geometric proofs involving angle measures
  • Learn about conditions for equality in triangle inequalities
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying trigonometry or inequalities in triangle properties will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
In a triangle $ABC$ with $\sqrt{2}\sin A-2\sin B+\sin C=0$, prove that $\dfrac{3}{\sin A}+\dfrac{\sqrt{2}}{\sin C}\ge 2(\sqrt{3}+1)$.
 
Mathematics news on Phys.org
anemone said:
In a triangle $ABC$ with $\sqrt{2}\sin A-2\sin B+\sin C=0$, prove that $\dfrac{3}{\sin A}+\dfrac{\sqrt{2}}{\sin C}\ge 2(\sqrt{3}+1)$.
I can find _a_ triangle that satisfies $\sqrt{2}\sin A-2\sin B+\sin C=0$ where $\dfrac{3}{sin A}+\dfrac{\sqrt{2}}{\sin C}\ge 2(\sqrt{3}+1)$ but you use $\ge$ , does this mean there are a multitude of triangles that meet these requirements?

To find my triangle I use the equalities: $\dfrac{sin A}{a} = \dfrac{sin B}{b} = \dfrac{sin C}{c}$

I rearrange your equation to: $\sqrt{2}\sin A+\sin C=2\sin B$ and let $b = 1$ then
$\sqrt{2}\sin A+\sin C=2\dfrac {sin B}{b}$. Now since $\dfrac {sin B}{b} = \dfrac{sin C}{c} = \dfrac{sin A}{a}$
we can write
$\sqrt{2}\sin A+\sin C= \dfrac{sin A}{a} + \dfrac{sin C}{c}$
and if we let $a = \dfrac {1}{\sqrt{2}}$ and $ c = 1$ then our equation is satisfied.

Now that we have found the 3 sides of our triangle we can find the 3 angles. From my CRC handbook I find
$\cos A = \dfrac{b^2 + c^2 - a^2}{2bc} = 0.75$
$\cos B = \dfrac{c^2 + a^2 - b^2}{2ca} = 0.3536$
$\cos C = \dfrac{a^2 + b^2 - c^2}{2ab} = 0.3536$

Converting to the angles in degrees I get:
$A = 41.41 , B = 69.30 , C = 69.30 $ (as a crosscheck we can see that they sum to 180)
and then
$\dfrac{3}{sin A} + \dfrac{\sqrt{2}}{sin C} = \dfrac{3}{sin 41.41} + \dfrac{\sqrt{2}}{sin69.30} = \dfrac{3}{0.6614} + \dfrac{\sqrt{2}}{0.9354} = 4.5358 + 1.5119 = 6.0477$ and this is greater than $2(\sqrt{3}+1) = 5.4641$.
 
DavidCampen said:
I can find _a_ triangle that satisfies $\sqrt{2}\sin A-2\sin B+\sin C=0$ where $\dfrac{3}{sin A}+\dfrac{\sqrt{2}}{\sin C}\ge 2(\sqrt{3}+1)$ but you use $\ge$ , does this mean there are a multitude of triangles that meet these requirements?

The question says as long as we can prove that the angles in a triangle $ABC$ satisfy $\sqrt{2}\sin A-2\sin B+\sin C=0$, then $\dfrac{3}{\sin A}+\dfrac{\sqrt{2}}{\sin C}\ge 2(\sqrt{3}+1)$ will always hold. (Nod)

The other comment that I have for this unsolved challenge is that the equality holds when $A=\dfrac{\pi}{3}$ and $C=\dfrac{\pi}{4}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K