MHB Prove u(A/E)=0 for Compact Hausdorff Spaces and Borel Measure

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Compact Measure
Click For Summary
In a compact Hausdorff space K with a Borel measure u, it is established that if A is an open set disjoint from a closed set E, then u(A) equals zero. The goal is to demonstrate that for any Borel set A, u(AE) equals u(A), where AE is the intersection of A and E. The discussion highlights that proving u(A\E) equals zero is crucial, as it follows from the outer regularity of the measure and the properties of Borel sets. It is noted that while A\E is disjoint from E, the open sets M used in the infimum may not be, complicating the argument. Ultimately, the compactness of K ensures that the measures can be compared effectively.
Fermat1
Messages
180
Reaction score
0
Let K be a compact hausdorff space, and u a borel measure on K. You are given that if A is an open set in K with A and E disjoint, we have u(A)=0. (E is a certain closed set in K)
Show that for a borel set A, we have that u(AE)=u(A), where AE is the intersection.

we have that u(A)=u(AE)+u(A\E) so we only have to prove u(A/E)=0

u(A/E)=inf(u(M):M is open and A\E is a subset of M)

A\E is disjoint with E but unfortunately this does not imply M is disjoint with E .
 
Physics news on Phys.org
Fermat said:
Let K be a compact hausdorff space, and u a borel measure on K. You are given that if A is an open set in K with A and E disjoint, we have u(A)=0. (E is a certain closed set in K)
Show that for a borel set A, we have that u(AE)=u(A), where AE is the intersection.

we have that u(A)=u(AE)+u(A\E) so we only have to prove u(A/E)=0

u(A/E)=inf(u(M):M is open and A\E is a subset of M)

A\E is disjoint with E but unfortunately this does not imply M is disjoint with E .
This argument seems too simple to be believable, but I can't see what's wrong with it (I'm suspicious, because it does not use the compactness of $K$). You are given that $E$ is closed, so its complement $K\setminus E$ is an open set disjoint from $E$. Therefore $u(K\setminus E) = 0.$ If $A$ is a Borel set then $u(A\setminus E) \leqslant u(K\setminus E) = 0$.
 
Is the last part simply because A\E is a subset of K\E?
 
Fermat said:
Is the last part simply because A\E is a subset of K\E?
Yes. If $X$, $Y$ are Borel sets with $X\subseteq Y$ then $u(X)\leqslant u(Y)$.
 
Indeed, in the use of outer regularity, there is a problem as the involved $M$ may not be disjoint with $E$.

We have to show that the measures $\mu$ and $\nu\colon A\mapsto \mu(A\cap E)$ are actually equal.

Since the ambient space is compact, we can assume that $\mu$ is finite. We only have to check that the relationship $\mu(A)=\mu(A\cap E)$ holds for $A$ an open set. Using closeness of $E$, $A\cap E^c$ is an open set disjoint with $E$.
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K