Proving $(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$

  • Context: MHB 
  • Thread starter Thread starter solakis1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on proving the equation $(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$ under the condition that $a+b+c-3(abc)^\dfrac{1}{3}=0$ and the inequalities $\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3})$, $\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$, and $\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$. By substituting $x=a^\dfrac{1}{3}$, $y=b^\dfrac{1}{3}$, and $z=c^\dfrac{1}{3}$, and applying the identity $(x^3+y^3+z^3-3xyz)=\dfrac{1}{2}(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)$, the proof is established that $x+y+z=0$ leads to the conclusion that $(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$.

PREREQUISITES
  • Understanding of cube roots and their properties
  • Familiarity with algebraic identities, specifically the sum of cubes
  • Knowledge of inequalities and their implications in mathematical proofs
  • Basic skills in manipulating algebraic expressions and equations
NEXT STEPS
  • Study the properties of cube roots and their applications in algebra
  • Learn about the sum of cubes identity and its derivations
  • Explore advanced algebraic inequalities and their proofs
  • Investigate the implications of symmetric sums in polynomial equations
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced algebraic proofs and inequalities.

solakis1
Messages
407
Reaction score
0
Given:
$a+b+c-3(abc)^\dfrac{1}{3}=0$ and $\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3}) $ and $\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$ and
$\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$
Then prove:

$(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
 
Mathematics news on Phys.org
solakis said:
Given:
$a+b+c-3(abc)^\dfrac{1}{3}=0$............(1)

$\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3}) $ .......(2)
$\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$ .......(3)
$\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$.........(4)
Then prove:

$(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
[sp] Let : $x=a^\dfrac{1}{3},y=b^\dfrac{1}{3},z=c^\dfrac{1}{3}$.........(5)
Use the following identity:

$(x^3+y^3+z^3-3xyz)=\dfrac{1}{2}(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)$.......(6)

Use (1),(2),(3) ,(4),(5) and (6) becomes:

$ (a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
Since:
$x+y+z=0$[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K