MHB Proving $(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$

  • Thread starter Thread starter solakis1
  • Start date Start date
Click For Summary
The discussion focuses on proving that $(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$ under the condition that $a+b+c-3(abc)^\dfrac{1}{3}=0$ and the cube roots of a, b, and c are distinct. By letting $x=a^\dfrac{1}{3}, y=b^\dfrac{1}{3}, z=c^\dfrac{1}{3}$, the identity relating the sum of cubes to their product is applied. Given the established conditions, it follows that $x+y+z=0$, leading to the conclusion that the sum of the cube roots equals zero. This proof effectively demonstrates the relationship between the variables under the specified constraints.
solakis1
Messages
407
Reaction score
0
Given:
$a+b+c-3(abc)^\dfrac{1}{3}=0$ and $\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3}) $ and $\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$ and
$\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$
Then prove:

$(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
 
Mathematics news on Phys.org
solakis said:
Given:
$a+b+c-3(abc)^\dfrac{1}{3}=0$............(1)

$\neg((a)^\dfrac{1}{3}=(b)^\dfrac{1}{3}) $ .......(2)
$\neg((b)^\dfrac{1}{3}=(c)^\dfrac{1}{3})$ .......(3)
$\neg((c)^\dfrac{1}{3}=(a)^\dfrac{1}{3})$.........(4)
Then prove:

$(a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
[sp] Let : $x=a^\dfrac{1}{3},y=b^\dfrac{1}{3},z=c^\dfrac{1}{3}$.........(5)
Use the following identity:

$(x^3+y^3+z^3-3xyz)=\dfrac{1}{2}(x+y+z)((x-y)^2+(y-z)^2+(z-x)^2)$.......(6)

Use (1),(2),(3) ,(4),(5) and (6) becomes:

$ (a)^\dfrac{1}{3}+(b)^\dfrac{1}{3}+(c)^\dfrac{1}{3}=0$
Since:
$x+y+z=0$[/sp]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K