Buri
- 271
- 0
Homework Statement
I'd like to show that:
f(x,y) = x^p/p + y^q/q - xy ≥ 0 where 1/q + 1/p = 1 and x ≥ 0 and y ≥ 0.
The attempt at a solution
What I'm actually trying to do is show that the minimum is on the line x = y^(q-1) at which the function takes on 0. But proving its actually always ≥ 0 is something that's causing me problems. Is there some inequality that could maybe lead me to a solution? I've tried considering lines in the plane like y = kx, but that doesn't lead me to anywhere. Any help?
I'd like to show that:
f(x,y) = x^p/p + y^q/q - xy ≥ 0 where 1/q + 1/p = 1 and x ≥ 0 and y ≥ 0.
The attempt at a solution
What I'm actually trying to do is show that the minimum is on the line x = y^(q-1) at which the function takes on 0. But proving its actually always ≥ 0 is something that's causing me problems. Is there some inequality that could maybe lead me to a solution? I've tried considering lines in the plane like y = kx, but that doesn't lead me to anywhere. Any help?