I want to prove the sequence a(n) = n diverges, directly, without the aid of any theorems.(adsbygoogle = window.adsbygoogle || []).push({});

Naturally, I try to prove this by contradiction. Here's my attempt:

Let L be a real number such that a(n) converges to L. Then for all e>0, there exists a natural number N s.t. any n>N implies d(a(n) - L) < e. So I say fine, fix that N and pick e=(1/2). Pick n such that n is the next natural number that is greater than N+L. Then d(a(n) - L) = d(n - L) > d(N+L-L) = N > (1/2).

My question is did I do anything illogical by the way I picked my e and fixed the N? Also, since L is fixed, are my inequalities justified? I'm still getting used to the importance of the order of quantifiers and such.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proving a sequence diverges directly

**Physics Forums | Science Articles, Homework Help, Discussion**