MHB Proving $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$ with $\tan(x+y)$ & $\tan(x-y)$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
Click For Summary
To prove the equation \( a\, \tan\,x - b\, \tan\,y = a^2 - b^2 \) using the identities for \( \tan(x+y) \) and \( \tan(x-y) \), start with the given equations \( \tan(x+y) = a + b \) and \( \tan(x-y) = a - b \). By applying the tangent addition and subtraction formulas, express \( \tan x \) and \( \tan y \) in terms of \( a \) and \( b \). Rearranging and substituting these expressions leads to the desired result. The proof confirms that the relationship holds true under the specified conditions. This demonstrates a clear connection between the tangent functions and the algebraic expression.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
If $\tan(x+y) = a + b$ and $\tan(x-y) = a - b$ show that $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$
 
Mathematics news on Phys.org
My solution:
\[\left\{\begin{matrix} x+y = \arctan (a+b)\\ x-y = \arctan (a-b) \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x = \arctan (a+b) + \arctan (a-b) = \arctan \left ( \frac{2a}{1-(a^2-b^2)} \right ) \\ 2y = \arctan (a+b) - \arctan (a-b) = \arctan \left ( \frac{2b}{1+(a^2-b^2)} \right ) \end{matrix}\right.\]

\[ \Rightarrow \left\{\begin{matrix} \tan(2x) = \frac{2\tan x}{1-\tan ^2x}= \frac{2a}{1-(a^2-b^2)}\\ \tan(2y) = \frac{2\tan y}{1-\tan ^2y}= \frac{2b}{1+(a^2-b^2)} \end{matrix}\right. \Rightarrow \left\{\begin{matrix} a \tan x = \frac{a^2}{1-(a^2-b^2)}(1-\tan ^2x)\\ b \tan y = \frac{b^2}{1+(a^2-b^2)}(1-\tan ^2y) \end{matrix}\right.\]

\[ \Rightarrow \left\{\begin{matrix} (a\tan x)^2+(1-(a^2-b^2))(a\tan x) -a^2 = 0\\ (b\tan y)^2+(1+(a^2-b^2))(b\tan y) -b^2 = 0 \end{matrix}\right. \]

\[ \Rightarrow \left\{\begin{matrix} a\tan x = \frac{1}{2}\left ( -(1-(a^2-b^2)) \pm \sqrt{(1-(a^2-b^2))^2+4a^2} \right )\\ b\tan x = \frac{1}{2}\left ( -(1+(a^2-b^2)) \pm \sqrt{(1+(a^2-b^2))^2+4b^2} \right ) \end{matrix}\right.\] \[ \Rightarrow \left\{\begin{matrix} a \tan x = \frac{1}{2}\left ( -(1-(a^2-b^2)) \pm \sqrt{1+(a^2-b^2)^2+ 2(a^2+b^2)}\right )\\ b \tan y = \frac{1}{2}\left ( -(1+(a^2-b^2)) \pm \sqrt{1+(a^2-b^2)^2+ 2(a^2+b^2)}\right ) \end{matrix}\right. \] \[ \Rightarrow a \tan x - b \tan y = \frac{1}{2}(-1+(a^2-b^2)+1+(a^2-b^2)) = a^2-b^2.\]
 
Last edited:
My Solution:

$\tan(x+y) = \frac{\tan\,x+\tan\,y}{1-\tan\,x\tan\,y}$ or $(a+b)(1-\tan\,x\tan\,y) = \tan\,x+\tan\,y \cdots(1)$
Similarly $(a-b)(1+\tan\,x\tan\,y) = \tan\,x-\tan\,y\cdots(2)$
multiplying (1) by (a-b) and (2) by (a+b) and adding we get $(a^2-b^2) = 2a\tan\,x-2b\tan \,y$
divide both sides by 2 to get the result.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 17 ·
Replies
17
Views
2K