MHB Proving $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$ with $\tan(x+y)$ & $\tan(x-y)$

  • Thread starter Thread starter kaliprasad
  • Start date Start date
Click For Summary
To prove the equation \( a\, \tan\,x - b\, \tan\,y = a^2 - b^2 \) using the identities for \( \tan(x+y) \) and \( \tan(x-y) \), start with the given equations \( \tan(x+y) = a + b \) and \( \tan(x-y) = a - b \). By applying the tangent addition and subtraction formulas, express \( \tan x \) and \( \tan y \) in terms of \( a \) and \( b \). Rearranging and substituting these expressions leads to the desired result. The proof confirms that the relationship holds true under the specified conditions. This demonstrates a clear connection between the tangent functions and the algebraic expression.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
If $\tan(x+y) = a + b$ and $\tan(x-y) = a - b$ show that $a\, \tan\,x - b\, \tan\,y = a^2 - b^2$
 
Mathematics news on Phys.org
My solution:
\[\left\{\begin{matrix} x+y = \arctan (a+b)\\ x-y = \arctan (a-b) \end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x = \arctan (a+b) + \arctan (a-b) = \arctan \left ( \frac{2a}{1-(a^2-b^2)} \right ) \\ 2y = \arctan (a+b) - \arctan (a-b) = \arctan \left ( \frac{2b}{1+(a^2-b^2)} \right ) \end{matrix}\right.\]

\[ \Rightarrow \left\{\begin{matrix} \tan(2x) = \frac{2\tan x}{1-\tan ^2x}= \frac{2a}{1-(a^2-b^2)}\\ \tan(2y) = \frac{2\tan y}{1-\tan ^2y}= \frac{2b}{1+(a^2-b^2)} \end{matrix}\right. \Rightarrow \left\{\begin{matrix} a \tan x = \frac{a^2}{1-(a^2-b^2)}(1-\tan ^2x)\\ b \tan y = \frac{b^2}{1+(a^2-b^2)}(1-\tan ^2y) \end{matrix}\right.\]

\[ \Rightarrow \left\{\begin{matrix} (a\tan x)^2+(1-(a^2-b^2))(a\tan x) -a^2 = 0\\ (b\tan y)^2+(1+(a^2-b^2))(b\tan y) -b^2 = 0 \end{matrix}\right. \]

\[ \Rightarrow \left\{\begin{matrix} a\tan x = \frac{1}{2}\left ( -(1-(a^2-b^2)) \pm \sqrt{(1-(a^2-b^2))^2+4a^2} \right )\\ b\tan x = \frac{1}{2}\left ( -(1+(a^2-b^2)) \pm \sqrt{(1+(a^2-b^2))^2+4b^2} \right ) \end{matrix}\right.\] \[ \Rightarrow \left\{\begin{matrix} a \tan x = \frac{1}{2}\left ( -(1-(a^2-b^2)) \pm \sqrt{1+(a^2-b^2)^2+ 2(a^2+b^2)}\right )\\ b \tan y = \frac{1}{2}\left ( -(1+(a^2-b^2)) \pm \sqrt{1+(a^2-b^2)^2+ 2(a^2+b^2)}\right ) \end{matrix}\right. \] \[ \Rightarrow a \tan x - b \tan y = \frac{1}{2}(-1+(a^2-b^2)+1+(a^2-b^2)) = a^2-b^2.\]
 
Last edited:
My Solution:

$\tan(x+y) = \frac{\tan\,x+\tan\,y}{1-\tan\,x\tan\,y}$ or $(a+b)(1-\tan\,x\tan\,y) = \tan\,x+\tan\,y \cdots(1)$
Similarly $(a-b)(1+\tan\,x\tan\,y) = \tan\,x-\tan\,y\cdots(2)$
multiplying (1) by (a-b) and (2) by (a+b) and adding we get $(a^2-b^2) = 2a\tan\,x-2b\tan \,y$
divide both sides by 2 to get the result.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 17 ·
Replies
17
Views
2K