MHB Proving $abcd\ge 3$ with $a, b, c, d>0$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ and $d>0$ and $\dfrac{1}{1+a^4}+\dfrac{1}{1+b^4}+\dfrac{1}{1+c^4}+\dfrac{1}{1+d^4}=1$. Prove that $abcd\ge 3$.
 
Mathematics news on Phys.org
Let $a^2=\tan \alpha,\,b^2=\tan \beta,\,c^2=\tan \gamma,\,d^2=\tan \delta$. Then $\cos^2 \alpha+\cos^2 \beta+\cos^2 \gamma+\cos^2 \delta=1$. By the AM-GM inequality,

$\sin^2 \alpha=\cos^2 \beta+\cos^2 \gamma+\cos^2 \delta \ge 3(\cos \beta \cos \gamma \cos \delta)^{\small \dfrac{2}{3}}$

Multiplying this and three other similar inequalities, we have

$\sin^2 \alpha \sin^2 \beta \sin^2 \gamma \sin^2 \delta=81\cos^2 \alpha \cos^2 \beta \cos^2 \gamma \cos^2 \delta$

Consequently we get $abcd=\sqrt{\tan \alpha \tan \beta \tan \gamma \tan \delta}\ge 3$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
928
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K