MHB Proving an Inequality Involving Sines

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Inequality
AI Thread Summary
The inequality involving sines states that for a triangle with angles A, B, and C, and corresponding sides a, b, and c, the sum of half-angle sines is less than or equal to the sum of ratios of sides to the sum of the other two sides. The proof utilizes the Law of Sines to express the sides in terms of the angles. By applying sum-to-product identities and simplifications, the relationship between the sine values and the side ratios is established. The conclusion is reached by demonstrating that each sine term is bounded by its corresponding ratio, confirming the inequality. This establishes a fundamental relationship in triangle geometry.
juantheron
Messages
243
Reaction score
1
Prove that $\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$
 
Mathematics news on Phys.org
Re: TRig Inequality

jacks said:
Prove that $\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

Hi jacks, :)

I hope \(A,\,B\mbox{ and } C\) are the internal angles of a triangle and \(a,\,b,\,c\) are the sides opposite to those angles respectively. In that case you can use the Law of sines.

\[\frac{a}{\sin A} \,=\, \frac{b}{\sin B} \,=\, \frac{c}{\sin C} \!\]

\begin{eqnarray}

\frac{b}{a+c}&=&\frac{1}{\frac{a}{b}+\frac{c}{b}}\\

&=&\frac{1}{\frac{\sin A}{\sin B}+\frac{\sin C}{\sin B}} \\

&=&\frac{\sin B}{\sin A+\sin C}\\

\end{eqnarray}

Similarly,

\[\frac{c}{a+b}=\frac{\sin C}{\sin A+\sin B}\mbox{ and }\frac{a}{b+c}=\frac{\sin A}{\sin B+\sin C}\]

\[\therefore\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\sin B}{\sin A+\sin C}+\frac{\sin C}{\sin A+\sin B}+\frac{\sin A}{\sin B+\sin C}\]

Using the sum to product identities and simplification gives,

\[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{ \sin\frac{B}{2}}{\cos\left(\frac{A-C}{2}\right)}+\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}+\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}~~~~~~~~~~~~~(1)\]

Note that, \(\displaystyle\left|\cos\left( \frac{B-C}{2}\right)\right|\leq 1\Rightarrow \frac{1}{\left|\cos\left( \frac{B-C}{2}\right)\right|}\geq 1\Rightarrow \frac{\sin \frac{A}{2}}{\left|\cos\left( \frac{B-C}{2}\right)\right|}\geq \sin \frac{A}{2}\Rightarrow -\sin \frac{A}{2}\geq\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}\mbox{ or }\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}\geq \sin \frac{A}{2}~~~~~~~~~~~~~(2)\)

Similarly, \[-\sin \frac{B}{2}\geq\frac{\sin\frac{B}{2}}{\cos\left( \frac{A-C}{2}\right)}\mbox{ or }\frac{\sin\frac{B}{2}}{\cos\left( \frac{A-C}{2}\right)}\geq \sin \frac{B}{2}~~~~~~~~~~~~~(3)\]

\[-\sin \frac{C}{2}\geq\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}\mbox{ or }\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}\geq \sin \frac{C}{2}~~~~~~~~~~~~~(4)\]

By (1), (2), (3) and (4),

\[\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\]

Kind Regards,
Sudharaka.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top