MHB Proving an Inequality Involving Sines

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The inequality involving sines states that for a triangle with angles A, B, and C, and corresponding sides a, b, and c, the sum of half-angle sines is less than or equal to the sum of ratios of sides to the sum of the other two sides. The proof utilizes the Law of Sines to express the sides in terms of the angles. By applying sum-to-product identities and simplifications, the relationship between the sine values and the side ratios is established. The conclusion is reached by demonstrating that each sine term is bounded by its corresponding ratio, confirming the inequality. This establishes a fundamental relationship in triangle geometry.
juantheron
Messages
243
Reaction score
1
Prove that $\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$
 
Mathematics news on Phys.org
Re: TRig Inequality

jacks said:
Prove that $\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$

Hi jacks, :)

I hope \(A,\,B\mbox{ and } C\) are the internal angles of a triangle and \(a,\,b,\,c\) are the sides opposite to those angles respectively. In that case you can use the Law of sines.

\[\frac{a}{\sin A} \,=\, \frac{b}{\sin B} \,=\, \frac{c}{\sin C} \!\]

\begin{eqnarray}

\frac{b}{a+c}&=&\frac{1}{\frac{a}{b}+\frac{c}{b}}\\

&=&\frac{1}{\frac{\sin A}{\sin B}+\frac{\sin C}{\sin B}} \\

&=&\frac{\sin B}{\sin A+\sin C}\\

\end{eqnarray}

Similarly,

\[\frac{c}{a+b}=\frac{\sin C}{\sin A+\sin B}\mbox{ and }\frac{a}{b+c}=\frac{\sin A}{\sin B+\sin C}\]

\[\therefore\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\sin B}{\sin A+\sin C}+\frac{\sin C}{\sin A+\sin B}+\frac{\sin A}{\sin B+\sin C}\]

Using the sum to product identities and simplification gives,

\[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{ \sin\frac{B}{2}}{\cos\left(\frac{A-C}{2}\right)}+\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}+\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}~~~~~~~~~~~~~(1)\]

Note that, \(\displaystyle\left|\cos\left( \frac{B-C}{2}\right)\right|\leq 1\Rightarrow \frac{1}{\left|\cos\left( \frac{B-C}{2}\right)\right|}\geq 1\Rightarrow \frac{\sin \frac{A}{2}}{\left|\cos\left( \frac{B-C}{2}\right)\right|}\geq \sin \frac{A}{2}\Rightarrow -\sin \frac{A}{2}\geq\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}\mbox{ or }\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}\geq \sin \frac{A}{2}~~~~~~~~~~~~~(2)\)

Similarly, \[-\sin \frac{B}{2}\geq\frac{\sin\frac{B}{2}}{\cos\left( \frac{A-C}{2}\right)}\mbox{ or }\frac{\sin\frac{B}{2}}{\cos\left( \frac{A-C}{2}\right)}\geq \sin \frac{B}{2}~~~~~~~~~~~~~(3)\]

\[-\sin \frac{C}{2}\geq\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}\mbox{ or }\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}\geq \sin \frac{C}{2}~~~~~~~~~~~~~(4)\]

By (1), (2), (3) and (4),

\[\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\]

Kind Regards,
Sudharaka.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K