Re: TRig Inequality
jacks said:
Prove that $\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}$
Hi jacks, :)
I hope \(A,\,B\mbox{ and } C\) are the internal angles of a triangle and \(a,\,b,\,c\) are the sides opposite to those angles respectively. In that case you can use the
Law of sines.
\[\frac{a}{\sin A} \,=\, \frac{b}{\sin B} \,=\, \frac{c}{\sin C} \!\]
\begin{eqnarray}
\frac{b}{a+c}&=&\frac{1}{\frac{a}{b}+\frac{c}{b}}\\
&=&\frac{1}{\frac{\sin A}{\sin B}+\frac{\sin C}{\sin B}} \\
&=&\frac{\sin B}{\sin A+\sin C}\\
\end{eqnarray}
Similarly,
\[\frac{c}{a+b}=\frac{\sin C}{\sin A+\sin B}\mbox{ and }\frac{a}{b+c}=\frac{\sin A}{\sin B+\sin C}\]
\[\therefore\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\sin B}{\sin A+\sin C}+\frac{\sin C}{\sin A+\sin B}+\frac{\sin A}{\sin B+\sin C}\]
Using the
sum to product identities and simplification gives,
\[\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{ \sin\frac{B}{2}}{\cos\left(\frac{A-C}{2}\right)}+\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}+\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}~~~~~~~~~~~~~(1)\]
Note that, \(\displaystyle\left|\cos\left( \frac{B-C}{2}\right)\right|\leq 1\Rightarrow \frac{1}{\left|\cos\left( \frac{B-C}{2}\right)\right|}\geq 1\Rightarrow \frac{\sin \frac{A}{2}}{\left|\cos\left( \frac{B-C}{2}\right)\right|}\geq \sin \frac{A}{2}\Rightarrow -\sin \frac{A}{2}\geq\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}\mbox{ or }\frac{\sin\frac{A}{2}}{\cos\left( \frac{B-C}{2}\right)}\geq \sin \frac{A}{2}~~~~~~~~~~~~~(2)\)
Similarly, \[-\sin \frac{B}{2}\geq\frac{\sin\frac{B}{2}}{\cos\left( \frac{A-C}{2}\right)}\mbox{ or }\frac{\sin\frac{B}{2}}{\cos\left( \frac{A-C}{2}\right)}\geq \sin \frac{B}{2}~~~~~~~~~~~~~(3)\]
\[-\sin \frac{C}{2}\geq\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}\mbox{ or }\frac{\sin\frac{C}{2}}{\cos\left( \frac{A-B}{2}\right)}\geq \sin \frac{C}{2}~~~~~~~~~~~~~(4)\]
By (1), (2), (3) and (4),
\[\sin \frac{A}{2}+\sin\frac{B}{2}+\sin \frac{C}{2}\leq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\]
Kind Regards,
Sudharaka.