MHB Proving Area Ratio of Equilateral Triangle Divided by Line

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
A line divides an equilateral triangle into two parts with the same perimeter and having areas $A_1$ and $A_2$ respectively. Prove that $\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
 
Mathematics news on Phys.org
anemone said:
A line divides an equilateral triangle into two parts with the same perimeter and having areas $A_1$ and $A_2$ respectively. Prove that $\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
my solution :
View attachment 1735
if DE is not parallel to BC the discussion is similar (x+y=0.5 must hold)
 

Attachments

  • 9 over 7.jpg
    9 over 7.jpg
    23.9 KB · Views: 118
anemone said:
A line divides an equilateral triangle into two parts with the same perimeter and having areas $A_1$ and $A_2$ respectively. Prove that $\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
another solution :
 

Attachments

  • ratio of two areas.jpg
    ratio of two areas.jpg
    24.5 KB · Views: 108
Thanks for participating and well done, Albert! For your second method, I recall vaguely seeing you used pretty much quite similar way to target other type of geometry problem.:cool:

Solution proposed by Vishal Lama, Southern Utah University:
Let's name the triangle be triangle ABC. WLOG, let the triangle has the unit side length of 1.The line can divide the triangle into two congruent triangles or into a triangle and a quadrilateral or . If the line cuts the triangle in two congruent triangles, then clearly $\dfrac{A_1}{A_2}=1$.

For the second case, we may assume that the line cuts side $AB$ at $D$ and $AC$ at $E$. Let the area of triangle $ADE=A_1$ and the area of quadrilateral $BDEC=A_2$. Then $A_1+A_2=\dfrac{1}{2}(1)(1)(\sin 60^{\circ})=\dfrac{\sqrt{3}}{4}$.

Let $BD=x$ and $CE=y$. Then $AD=1-x$, $AE=1-y$. Since the regions with areas $A_1$ and $A_2$ have equal perimeter, we must have $BD+BC+CE+AD+AE$.

$\therefore x+1+y=(1-x)+(1-y) \rightarrow x+y=\dfrac{1}{2}$

Now, area of triangle $ADE=A_1=\dfrac{1}{2}(AD)(AE)\sin \angle DAE$,

$A_1=\dfrac{1}{2}(1-x)(1-y)\sin 60^{\circ} \rightarrow A_1=\dfrac{\sqrt{3}}{4}(1-x)(\dfrac{1}{2}+x)$

Denote $k=\dfrac{A_2}{A_1}>0$, we get that

$\dfrac{A_1}{A_1+A_2}=\dfrac{\dfrac{\sqrt{3}}{4}(1-x)(\dfrac{1}{2}+x)}{\dfrac{\sqrt{3}}{4}}=(1-x)(\dfrac{1}{2}+x)=\dfrac{1}{1+k}$

which after simplification yields

$2x^2-x+\dfrac{1-k}{1+k}=0$

The above quadratic equation in $x$ has real roots and the discriminant should be greater than or equal to zero. Thus,

$D=1-4\cdot2\cdot\left( \dfrac{1-k}{1+k} \right)=\dfrac{9k-7}{k+1} \ge 0$

Therefore $k \ge \dfrac{7}{9}$ or $\dfrac{A_2}{A_1} \ge \dfrac{7}{9}$.

Changing the notations, area of triangle $ADE=A_2$ and area of quadrilateral $BDEC=A_1$ we get $\dfrac{A_1}{A_2} \ge \dfrac{7}{9}$.

Thus,

$\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
1
Views
987
Replies
9
Views
2K
Replies
5
Views
3K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
2
Views
2K
Back
Top