Proving Area Ratio of Equilateral Triangle Divided by Line

Click For Summary
SUMMARY

The discussion centers on proving the area ratio of two segments, \(A_1\) and \(A_2\), formed by a line dividing an equilateral triangle with equal perimeters. The established conclusion is that the ratio satisfies the inequality \(\frac{7}{9} \leq \frac{A_1}{A_2} \leq \frac{9}{7}\). Participants, including Vishal Lama from Southern Utah University, contributed various methods to demonstrate this geometric property, reinforcing the relationship between perimeter and area in equilateral triangles.

PREREQUISITES
  • Understanding of equilateral triangle properties
  • Familiarity with geometric inequalities
  • Basic knowledge of area calculations
  • Experience with mathematical proofs
NEXT STEPS
  • Study geometric inequalities in triangle geometry
  • Explore advanced properties of equilateral triangles
  • Learn about mathematical proof techniques in geometry
  • Investigate applications of perimeter-area relationships in other geometric shapes
USEFUL FOR

Mathematicians, geometry enthusiasts, educators, and students seeking to deepen their understanding of geometric properties and inequalities related to equilateral triangles.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
A line divides an equilateral triangle into two parts with the same perimeter and having areas $A_1$ and $A_2$ respectively. Prove that $\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
 
Mathematics news on Phys.org
anemone said:
A line divides an equilateral triangle into two parts with the same perimeter and having areas $A_1$ and $A_2$ respectively. Prove that $\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
my solution :
View attachment 1735
if DE is not parallel to BC the discussion is similar (x+y=0.5 must hold)
 

Attachments

  • 9 over 7.jpg
    9 over 7.jpg
    23.9 KB · Views: 130
anemone said:
A line divides an equilateral triangle into two parts with the same perimeter and having areas $A_1$ and $A_2$ respectively. Prove that $\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
another solution :
 

Attachments

  • ratio of two areas.jpg
    ratio of two areas.jpg
    24.5 KB · Views: 122
Thanks for participating and well done, Albert! For your second method, I recall vaguely seeing you used pretty much quite similar way to target other type of geometry problem.:cool:

Solution proposed by Vishal Lama, Southern Utah University:
Let's name the triangle be triangle ABC. WLOG, let the triangle has the unit side length of 1.The line can divide the triangle into two congruent triangles or into a triangle and a quadrilateral or . If the line cuts the triangle in two congruent triangles, then clearly $\dfrac{A_1}{A_2}=1$.

For the second case, we may assume that the line cuts side $AB$ at $D$ and $AC$ at $E$. Let the area of triangle $ADE=A_1$ and the area of quadrilateral $BDEC=A_2$. Then $A_1+A_2=\dfrac{1}{2}(1)(1)(\sin 60^{\circ})=\dfrac{\sqrt{3}}{4}$.

Let $BD=x$ and $CE=y$. Then $AD=1-x$, $AE=1-y$. Since the regions with areas $A_1$ and $A_2$ have equal perimeter, we must have $BD+BC+CE+AD+AE$.

$\therefore x+1+y=(1-x)+(1-y) \rightarrow x+y=\dfrac{1}{2}$

Now, area of triangle $ADE=A_1=\dfrac{1}{2}(AD)(AE)\sin \angle DAE$,

$A_1=\dfrac{1}{2}(1-x)(1-y)\sin 60^{\circ} \rightarrow A_1=\dfrac{\sqrt{3}}{4}(1-x)(\dfrac{1}{2}+x)$

Denote $k=\dfrac{A_2}{A_1}>0$, we get that

$\dfrac{A_1}{A_1+A_2}=\dfrac{\dfrac{\sqrt{3}}{4}(1-x)(\dfrac{1}{2}+x)}{\dfrac{\sqrt{3}}{4}}=(1-x)(\dfrac{1}{2}+x)=\dfrac{1}{1+k}$

which after simplification yields

$2x^2-x+\dfrac{1-k}{1+k}=0$

The above quadratic equation in $x$ has real roots and the discriminant should be greater than or equal to zero. Thus,

$D=1-4\cdot2\cdot\left( \dfrac{1-k}{1+k} \right)=\dfrac{9k-7}{k+1} \ge 0$

Therefore $k \ge \dfrac{7}{9}$ or $\dfrac{A_2}{A_1} \ge \dfrac{7}{9}$.

Changing the notations, area of triangle $ADE=A_2$ and area of quadrilateral $BDEC=A_1$ we get $\dfrac{A_1}{A_2} \ge \dfrac{7}{9}$.

Thus,

$\dfrac{7}{9} \le \dfrac{A_1}{A_2} \le \dfrac{9}{7}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K