Proving Co-Prime Numbers in Sets of Five

  • Context: MHB 
  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Numbers Sets
Click For Summary

Discussion Overview

The discussion centers on the proposition that in any set of five consecutive integers, at least one number is co-prime to the other four. The scope includes theoretical exploration and mathematical reasoning related to number theory.

Discussion Character

  • Exploratory, Mathematical reasoning

Main Points Raised

  • One participant suggests that in any set of five consecutive numbers, there exists at least one number that is co-prime to the others, providing an example with the numbers 2, 3, 4, 5, and 6.

Areas of Agreement / Disagreement

The discussion appears to be in the initial stages, with no consensus reached on the proposition or its proof. Further exploration and validation may be needed.

Contextual Notes

Limitations include the lack of formal proof or mathematical steps to support the claim, and the discussion does not address potential exceptions or specific definitions of co-primality.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
show that in a set of any 5 consecutive numbers there is at least one number that is co-prime to all the rest 4 (for example (2,3,4,5,6- 5 is co-prime to 2,3,4,6)
 
Mathematics news on Phys.org
Reducing modulo $5$, we see that it's enough to consider $\{1, 2, 3, 4, 5\}$ as any $5$ consecutive integers form a complete residue system. Since the observation is true for $\{1, 2, 3, 4, 5\}$, it is true for all case. QED.
 
mathbalarka said:
Reducing modulo $5$, we see that it's enough to consider $\{1, 2, 3, 4, 5\}$ as any $5$ consecutive integers form a complete residue system. Since the observation is true for $\{1, 2, 3, 4, 5\}$, it is true for all case. QED.

I am not convinced about the solution can you clarify it
 
because we have 5 consecutive number the largest difference is 4. so if there is a common factor between 2 numbers of the 5 it has to be <=4. So a common prime factor has to be 2 or 3.

now in a set of 5 consecutive numbers one of the numbers has to be of the form 6n + 1 or 6n - 1 which is neither divisible by 2 nor 3. so it is co-prime to rest of the 4.
 
Last edited:

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K