MHB Proving Continuity in a Rectangle Using f(x,y) Function

  • Thread starter Thread starter Suvadip
  • Start date Start date
  • Tags Tags
    Continuity
Suvadip
Messages
68
Reaction score
0
If $$f(x,y)$$ be a continuous function of $$(x,y)$$ in the rectangle $$R:{a \leq x \leq b, c \leq y \leq d}$$ , then $$\int_a^b f(x,y) dx$$ is also a continuous function of $$y$$ in $$[c,d]$$

How to proceed with the proof of the above theorem?
 
Physics news on Phys.org
suvadip said:
If $$f(x,y)$$ be a continuous function of $$(x,y)$$ in the rectangle $$R:{a \leq x \leq b, c \leq y \leq d}$$ , then $$\int_a^b f(x,y) dx$$ is also a continuous function of $$y$$ in $$[c,d]$$

How to proceed with the proof of the above theorem?

If an f(x,y) is continuous in a closed and bounded region, then f(x,y) is also uniformly continous here, so that setting...

$\displaystyle G(y) = \int_{a}^{b} f(x,y)\ dx\ (1)$

... for any h>0 is...

$\displaystyle |G(y + h) - G(y)| = | \int_{a}^{b} \{ f(x,y+h) - f(x,y)\}\ dx| \le \int_{a}^{b} |f(x,y+h) - f(x,y)|\ d x\ (2)$

Now f(x,y) is uniformly continuous so that choosing h 'small enough' You can do the last term of (2) 'small as You like' and that means that G(y) is continous...

Kind regards

$\chi$ $\sigma$
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K