MHB Proving Continuous Extension of $f(x,y)$ Function

laura1231
Messages
28
Reaction score
0
Can I extend the function $f(x,y)=(x^2+y^2)\arctan\dfrac{1}{|xy|}$ to a continuous function?
If I consider the restriction of $f$ along the line $x=k$ i find $\lim_{(x,y)\rightarrow(k,0)}(x^2+y^2)\arctan\dfrac{1}{|xy|}=k^2\dfrac{\pi}{2}$
how can i prove that?
 
Physics news on Phys.org
laura123 said:
Can I extend the function $f(x,y)=(x^2+y^2)\arctan\dfrac{1}{|xy|}$ to a continuous function?
If I consider the restriction of $f$ along the line $x=k$ i find $\lim_{(x,y)\rightarrow(k,0)}(x^2+y^2)\arctan\dfrac{1}{|xy|}=k^2\dfrac{\pi}{2}$
how can i prove that?

Hey laura123!

To extend $f$ to a continuous function on $\mathbb R^2$ we need that for every $x_0$ the limit $\displaystyle\lim_{(x,y)\to(x_0,0)} f(x,y)$ exists. And we need the same thing for $y$ values, although that follows by symmetry.

We can try to find such a limit by switching to local polar coordinates.
That is:
$$\lim_{(x,y)\to(x_0,0)} f(x,y)
= \lim_{r\to 0} f(x_0+r\cos\phi, r\sin\phi)
$$
Can we find that limit? (Wondering)
 
$$\displaystyle\lim_{(x,y)\rightarrow(x_0,0)}(x^2+y^2)\arctan\dfrac{1}{|xy|}=$$
$$=\displaystyle\lim_{r\rightarrow0}[(x_0+r\cos\phi)^2+(r\sin\phi)^2]\arctan\dfrac{1}{|(x_0+r\cos\phi)r\sin\phi|}=$$
$$=\displaystyle\lim_{r\rightarrow0}(x_0^2+r^2\cos^2\phi+2rx_0\cos\phi+r^2\sin^2\phi)\arctan\dfrac{1}{|x_0r\sin\phi+r^2\cos\phi \sin\phi|}=$$
$$=\displaystyle\lim_{r\rightarrow0}(x_0^2+2rx_0\cos\phi+r^2)\arctan\dfrac{1}{|r(x_0\sin\phi+r\cos\phi \sin\phi)|}=x_0^2\frac{\pi}{2},\ \ \forall\phi\in]0;2\pi],\phi\neq\pi$$
 
Yep. (Nod)
So we can indeed extend f to a continuous function with $f(x,0)=x^2\frac\pi 2$, $f(0,y)=y^2\frac\pi 2$, and $f(0,0)=0$.
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top