MHB Proving Convergence of e^z Series Using Ratio Test on Coefficients

Click For Summary
SUMMARY

The discussion centers on proving the convergence of the series for e^z, expressed as e^z = Σ(z^n/n!). The ratio test is applied to the coefficients 1/n!, yielding a limit of 0, which indicates an infinite radius of convergence (R = ∞). Participants confirm that when the limit of the ratio test approaches 0, the series converges for all complex numbers C. The discussion emphasizes the validity of using the ratio test on coefficients to determine convergence.

PREREQUISITES
  • Understanding of power series and their convergence properties
  • Familiarity with the ratio test for series convergence
  • Basic knowledge of complex analysis
  • Proficiency in mathematical notation and limits
NEXT STEPS
  • Study the Cauchy-Hadamard theorem for radius of convergence
  • Learn about the root test and its applications in series convergence
  • Explore advanced topics in complex analysis related to power series
  • Review examples of series with different radii of convergence
USEFUL FOR

Mathematicians, students studying complex analysis, and anyone interested in series convergence and power series properties.

Poirot1
Messages
243
Reaction score
0
I am trying to prove e^z converges on all C. Here is my attempt.

e^z=series(z^n/n!)

use the ratio test on the coefficents 1/n! gives lim(1/(n+1))=0, which from rudin means radius of convergence R=1/0 -> R=infinity.
 
Physics news on Phys.org
Poirot said:
I am trying to prove e^z converges on all C. Here is my attempt.

e^z=series(z^n/n!)

use the ratio test on the coefficents 1/n! gives lim(1/(n+1))=0, which from rudin means radius of convergence R=1/0 -> R=infinity.

You should know that $\displaystyle e^z = \sum_{z = 0}^{\infty}\frac{z^n}{n!}$.

The ratio test states that when you evaluate $\displaystyle \lim_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right|$, if this limit is less than 1, the series is convergent, if this limit is greater than 1, the series is divergent, and if the limit is 1, the test is inconclusive. Since you are trying to find the values for which this series is convergent, you need to set $\displaystyle \lim_{n \to \infty}\left|\frac{a_{n+1}}{a_n}\right| < 1$, simplify, and see what values of z will satisfy that inequality.
 
Poirot said:
I am trying to prove e^z converges on all C. Here is my attempt.

e^z=series(z^n/n!)

use the ratio test on the coefficents 1/n! gives lim(1/(n+1))=0, which from rudin means radius of convergence R=1/0 -> R=infinity.

The ratio test applies to the terms not the coefficients.

CB
 
Yes you can do it that way but you can also do the test on the coefficents then let R be the reciprocal. I have done this before so I know it works, I was just wondering when you get 0 can you just say 1/0 = infinity?
 
No, you can't "just say" that. However, it is fairly easy to prove that if $a_n$ converges to 0 then $\frac{1}{a_n}$ does not converge. If you add that $a_n> 0$ for all n, then if diverges to $+\infty$.
 
In the context of radius of convergence R must be greater than or equal to 0. I'm pretty convinced that, for power series, whener the ratio/root test of co-efficents gives 0, then we have infinite radius of convergence. Anyone who cares to contradict that is free to give a counter example.
 
Poirot said:
In the context of radius of convergence R must be greater than or equal to 0. I'm pretty convinced that, for power series, whener the ratio/root test of co-efficents gives 0, then we have infinite radius of convergence. Anyone who cares to contradict that is free to give a counter example.

Yes you are correct. The ratio test give the radius of convergence whenever the limit exists. (http://en.wikipedia.org/wiki/Power_series#Radius_of_convergence) The root test also give the radius of convergence. (http://en.wikipedia.org/wiki/Cauchy–Hadamard_theorem)
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K