MHB Proving cosA+cosB+cosC ≤ 3/2 with Jensen's Inequality

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi,
Given $ A+B+C=\pi$, I need to prove $ cosA+cosB+cosC\leq \frac{3}{2}$.

I wish to ask if my following reasoning is correct.
First, I think of the case where A and B are acute angles, then I can use the Jensen's Inequality to show that the following is true.
$ cos\frac{A+B}{2}\geq \frac{cosA+cosB}{2}$
Carrying on with the working, I get
$ sin\frac{C}{2}\geq \frac{cosA+cosB}{2}$
$ 2sin\frac{C}{2}\geq cosA+cosB$
$ cosA+cosB\leq 2sin\frac{C}{2}$
$ cosA+cosB+cosC\leq 2sin\frac{C}{2}+cosC$
$ cosA+cosB+cosC\leq 2sin\frac{C}{2}+1-2sin^2C$
Completing square the RHS to obtain
$ cosA+cosB+cosC\leq -2(sin\frac{C}{2}-\frac{1}{2})^2+\frac{3}{2}$

Now, it's obvious to see that $ cosA+cosB+cosC\leq \frac{3}{2}$

My question is, can I solve the question by thinking A and B are acute angles and ignore the angle C right from the start so that I can let f(x)=cosx and notice that the curve of f(x)=cos x in the interval $x\in (0,\frac{\pi}{2})$ take the convex shape which in turn I can apply the Jensen's inequality without a problem?

Thanks.
 
Mathematics news on Phys.org
anemone said:
My question is, can I solve the question by thinking A and B are acute angles and ignore the angle C right from the start so that I can let f(x)=cosx and notice that the curve of f(x)=cos x in the interval $x\in (0,\frac{\pi}{2})$ take the convex shape which in turn I can apply the Jensen's inequality without a problem?
Yes: a triangle can have at most one obtuse angle, and the other two (acute) angles must necessarily be adjacent. Without loss of generality (favourite math phrase), take them to be A and B.

And BTW that is a very neat proof!
 
Opalg said:
Yes: a triangle can have at most one obtuse angle, and the other two (acute) angles must necessarily be adjacent. Without loss of generality (favourite math phrase), take them to be A and B.
Thanks, Opalg.
And I think 'obviously' is also one of the favourite math phrase too!
But unfortunately that is a phrase to which I considered not so true and annoying some (if not most) of the time.:rolleyes:

Opalg said:
And BTW that is a very neat proof!
:)
Thanks. Seriously, your compliment just made my day.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top