Proving $\displaystyle\int_C \vec{F}\cdot d\vec{r} = 0$ with Closed Curve

  • Context: MHB 
  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Closed Curve
Click For Summary

Discussion Overview

The discussion revolves around proving that the line integral of the vector field $\vec{F} = \frac{yi + xj}{x^2 + y^2}$ over a simple closed curve $C$ in the xy-plane not enclosing the origin equals zero. Participants explore the conditions under which this statement holds, including the implications of the curl of the vector field and the existence of a potential function.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant asks how to prove that $\int_C \vec{F}\cdot d\vec{r} = 0$ for the given vector field.
  • Another participant argues that the proposition is incorrect, citing that the curl of $\vec{F}$ is nonzero and providing a counterexample with a specific closed curve.
  • Some participants discuss the concept of conservative vector fields and potential functions, suggesting that if a potential exists, the line integral should be zero.
  • One participant claims to have computed the curl of the vector field and found it to be zero, questioning how this could be given the previous claims.
  • Another participant points out a potential error in the curl computation and confirms that the curl is indeed nonzero.

Areas of Agreement / Disagreement

Participants generally disagree on the validity of the original proposition. Some assert that the line integral is zero under certain conditions, while others maintain that the nonzero curl indicates otherwise. The discussion remains unresolved regarding the implications of the curl and the existence of a potential function.

Contextual Notes

Limitations include the dependence on the region of integration and the definitions of conservative fields. The discussion highlights the need for careful consideration of the conditions under which the integral is evaluated.

WMDhamnekar
MHB
Messages
378
Reaction score
30
If C is the simple closed curve in the xy plane not enclosing the origin, how to prove that $\displaystyle\int_C \vec{F}\cdot d\vec{r} =0 $ where $$ F= \frac{yi +xj}{x^2+y^2}$$

How to answer this question? Any math help will be accepted. I am working on this question. If any member of Math help board know the correct answer, may reply.
 
Physics news on Phys.org
This proposition is incorrect, since the curl of $\vec{F}$ is nonzero. For a concrete counterexample, let C be the positively oriented square in the plane with vertices $(1,0), (2,0), (2,1)$, and $(1,1)$. A direct computation shows $\int_C \vec{F}\cdot d\vec{r} ≠ 0$.
 
Euge said:
This proposition is incorrect, since the curl of $\vec{F}$ is nonzero. For a concrete counterexample, let C be the positively oriented square in the plane with vertices $(1,0), (2,0), (2,1)$, and $(1,1)$. A direct computation shows $\int_C \vec{F}\cdot d\vec{r} ≠ 0$.

1656398339229.png

A real valued function F(x,y) such that $\nabla {F(x,y)}=f(x,y)$ is called potential for f. A conservative vector field is one which has a potential.

Now, in our problem, we have to show that $\vec{F} =\frac{yi +xj}{x^2+y^2}$ is a conservative vector field (It has a potential).
Thus, a potential $\mathcal{F(x,y)}$ for $F(x,y) = \frac{yi}{x^2+y^2} + \frac{xj}{x^2+y^2}$ exists, namely,
$$ \arctan{(\frac{x}{y})} + \arctan{(\frac{y}{x})}.$$

You can verify in your example that the value of line integral F along any curve C going from (1,0) to (2,0) or from (2,0) to (2,1) or from (2,1) to (1,1) and finally from (1,1) to (1,0) will always be zero. Since by above given theorem
$$\displaystyle\int_C\vec{F}\cdot d\vec{r} = \mathcal{F} (2,0) - \mathcal{F} (1,0) = \arctan{(\frac20)} + \arctan{(\frac02)} - \arctan{(\frac10)}-\arctan{(\frac01)} = \frac{\pi}{2} -\frac{\pi}{2} =0$$
 
Dhamnekar Winod said:
View attachment 11853
A real valued function F(x,y) such that $\nabla {F(x,y)}=f(x,y)$ is called potential for f. A conservative vector field is one which has a potential.

Now, in our problem, we have to show that $\vec{F} =\frac{yi +xj}{x^2+y^2}$ is a conservative vector field (It has a potential).
Thus, a potential $\mathcal{F(x,y)}$ for $F(x,y) = \frac{yi}{x^2+y^2} + \frac{xj}{x^2+y^2}$ exists, namely,
$$ \arctan{(\frac{x}{y})} + \arctan{(\frac{y}{x})}.$$

You can verify in your example that the value of line integral F along any curve C going from (1,0) to (2,0) or from (2,0) to (2,1) or from (2,1) to (1,1) and finally from (1,1) to (1,0) will always be zero. Since by above given theorem
$$\displaystyle\int_C\vec{F}\cdot d\vec{r} = \mathcal{F} (2,0) - \mathcal{F} (1,0) = \arctan{(\frac20)} + \arctan{(\frac02)} - \arctan{(\frac10)}-\arctan{(\frac01)} = \frac{\pi}{2} -\frac{\pi}{2} =0$$
A potential function exists if and only if the curl of the vector field is zero. Here we have [math]\nabla \times \left ( \dfrac{y}{x^2 + y^2} \hat{i} + \dfrac{x}{x^2 + y^2} \hat{j} \right ) = - \dfrac{2 (x^2 - y^2)}{(x^2 + y^2)^2} \hat{k}[/math].

-Dan
 
topsquark said:
A potential function exists if and only if the curl of the vector field is zero. Here we have [math]\nabla \times \left ( \dfrac{y}{x^2 + y^2} \hat{i} + \dfrac{x}{x^2 + y^2} \hat{j} \right ) = - \dfrac{2 (x^2 - y^2)}{(x^2 + y^2)^2} \hat{k}[/math].

-Dan
$\nabla \times \bigg(\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2},0\bigg)= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{vmatrix} = \hat{i} (0 - 0) +\hat{j} (0 - 0) + \hat{k} \bigg(\frac{-2xy}{(x^2+y^2)^2} -\frac{-2xy}{(x^2+y^2)^2}\bigg)= 0 $

My computation of curl of conservative vector field is zero. How is that?(Bigsmile)(Clapping)
 
Last edited:
Dhamnekar Winod said:
$\nabla \times \bigg(\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2},0\bigg)= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{y}{x^2+y^2} & 0 \end{vmatrix} = \hat{i} (0 - 0) +\hat{j} (0 - 0) + \hat{k} \bigg(\frac{-2xy}{(x^2+y^2)^2} -\frac{-2xy}{(x^2+y^2)^2}\bigg)= 0 $

My computation of curl of conservative vector field is zero. How is that?(Bigsmile)(Clapping)
A typo? Check the (3,2) component.
\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{vmatrix}

[math]\dfrac{ \partial }{ \partial x} \dfrac{x}{x^2 + y^2} - \dfrac{ \partial }{ \partial y} \dfrac{y}{x^2 + y^2} = \dfrac{((x^2 + y^2) - x(2x) ) - ((x^2 + y^2) - y(2y) }{ (x^2 + y^2)^2} = -2 \dfrac{x^2 - y^2}{(x^2 + y^2)^2}[/math]

-Dan
 
Last edited by a moderator:
topsquark said:
A typo? Check the (3,2) component.
\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{vmatrix}

-Dan
Thanks. I corrected that now. You are correct. Curl of $\vec{f}$ is nonzero.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K