MHB Proving $\displaystyle\int_C \vec{F}\cdot d\vec{r} = 0$ with Closed Curve

  • Thread starter Thread starter WMDhamnekar
  • Start date Start date
  • Tags Tags
    Closed Curve
Click For Summary
The discussion centers on proving that the line integral of the vector field $\vec{F} = \frac{yi + xj}{x^2 + y^2}$ around a simple closed curve C that does not enclose the origin equals zero. Participants highlight that the proposition is incorrect because the curl of $\vec{F}$ is nonzero, providing a counterexample with a positively oriented square. A potential function for $\vec{F}$ is discussed, but it is noted that a conservative vector field requires a zero curl, which is not the case here. Ultimately, the curl calculation confirms that it is nonzero, validating the assertion that the integral does not equal zero. The conclusion emphasizes the importance of verifying the conditions for a vector field to be conservative.
WMDhamnekar
MHB
Messages
376
Reaction score
28
If C is the simple closed curve in the xy plane not enclosing the origin, how to prove that $\displaystyle\int_C \vec{F}\cdot d\vec{r} =0 $ where $$ F= \frac{yi +xj}{x^2+y^2}$$

How to answer this question? Any math help will be accepted. I am working on this question. If any member of Math help board know the correct answer, may reply.
 
Physics news on Phys.org
This proposition is incorrect, since the curl of $\vec{F}$ is nonzero. For a concrete counterexample, let C be the positively oriented square in the plane with vertices $(1,0), (2,0), (2,1)$, and $(1,1)$. A direct computation shows $\int_C \vec{F}\cdot d\vec{r} ≠ 0$.
 
Euge said:
This proposition is incorrect, since the curl of $\vec{F}$ is nonzero. For a concrete counterexample, let C be the positively oriented square in the plane with vertices $(1,0), (2,0), (2,1)$, and $(1,1)$. A direct computation shows $\int_C \vec{F}\cdot d\vec{r} ≠ 0$.

1656398339229.png

A real valued function F(x,y) such that $\nabla {F(x,y)}=f(x,y)$ is called potential for f. A conservative vector field is one which has a potential.

Now, in our problem, we have to show that $\vec{F} =\frac{yi +xj}{x^2+y^2}$ is a conservative vector field (It has a potential).
Thus, a potential $\mathcal{F(x,y)}$ for $F(x,y) = \frac{yi}{x^2+y^2} + \frac{xj}{x^2+y^2}$ exists, namely,
$$ \arctan{(\frac{x}{y})} + \arctan{(\frac{y}{x})}.$$

You can verify in your example that the value of line integral F along any curve C going from (1,0) to (2,0) or from (2,0) to (2,1) or from (2,1) to (1,1) and finally from (1,1) to (1,0) will always be zero. Since by above given theorem
$$\displaystyle\int_C\vec{F}\cdot d\vec{r} = \mathcal{F} (2,0) - \mathcal{F} (1,0) = \arctan{(\frac20)} + \arctan{(\frac02)} - \arctan{(\frac10)}-\arctan{(\frac01)} = \frac{\pi}{2} -\frac{\pi}{2} =0$$
 
Dhamnekar Winod said:
View attachment 11853
A real valued function F(x,y) such that $\nabla {F(x,y)}=f(x,y)$ is called potential for f. A conservative vector field is one which has a potential.

Now, in our problem, we have to show that $\vec{F} =\frac{yi +xj}{x^2+y^2}$ is a conservative vector field (It has a potential).
Thus, a potential $\mathcal{F(x,y)}$ for $F(x,y) = \frac{yi}{x^2+y^2} + \frac{xj}{x^2+y^2}$ exists, namely,
$$ \arctan{(\frac{x}{y})} + \arctan{(\frac{y}{x})}.$$

You can verify in your example that the value of line integral F along any curve C going from (1,0) to (2,0) or from (2,0) to (2,1) or from (2,1) to (1,1) and finally from (1,1) to (1,0) will always be zero. Since by above given theorem
$$\displaystyle\int_C\vec{F}\cdot d\vec{r} = \mathcal{F} (2,0) - \mathcal{F} (1,0) = \arctan{(\frac20)} + \arctan{(\frac02)} - \arctan{(\frac10)}-\arctan{(\frac01)} = \frac{\pi}{2} -\frac{\pi}{2} =0$$
A potential function exists if and only if the curl of the vector field is zero. Here we have [math]\nabla \times \left ( \dfrac{y}{x^2 + y^2} \hat{i} + \dfrac{x}{x^2 + y^2} \hat{j} \right ) = - \dfrac{2 (x^2 - y^2)}{(x^2 + y^2)^2} \hat{k}[/math].

-Dan
 
topsquark said:
A potential function exists if and only if the curl of the vector field is zero. Here we have [math]\nabla \times \left ( \dfrac{y}{x^2 + y^2} \hat{i} + \dfrac{x}{x^2 + y^2} \hat{j} \right ) = - \dfrac{2 (x^2 - y^2)}{(x^2 + y^2)^2} \hat{k}[/math].

-Dan
$\nabla \times \bigg(\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2},0\bigg)= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{vmatrix} = \hat{i} (0 - 0) +\hat{j} (0 - 0) + \hat{k} \bigg(\frac{-2xy}{(x^2+y^2)^2} -\frac{-2xy}{(x^2+y^2)^2}\bigg)= 0 $

My computation of curl of conservative vector field is zero. How is that?(Bigsmile)(Clapping)
 
Last edited:
Dhamnekar Winod said:
$\nabla \times \bigg(\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2},0\bigg)= \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{y}{x^2+y^2} & 0 \end{vmatrix} = \hat{i} (0 - 0) +\hat{j} (0 - 0) + \hat{k} \bigg(\frac{-2xy}{(x^2+y^2)^2} -\frac{-2xy}{(x^2+y^2)^2}\bigg)= 0 $

My computation of curl of conservative vector field is zero. How is that?(Bigsmile)(Clapping)
A typo? Check the (3,2) component.
\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{vmatrix}

[math]\dfrac{ \partial }{ \partial x} \dfrac{x}{x^2 + y^2} - \dfrac{ \partial }{ \partial y} \dfrac{y}{x^2 + y^2} = \dfrac{((x^2 + y^2) - x(2x) ) - ((x^2 + y^2) - y(2y) }{ (x^2 + y^2)^2} = -2 \dfrac{x^2 - y^2}{(x^2 + y^2)^2}[/math]

-Dan
 
Last edited by a moderator:
topsquark said:
A typo? Check the (3,2) component.
\begin{vmatrix} i & j & k \\ \frac{\partial}{\partial{x}} & \frac{\partial}{\partial{y}} & \frac{\partial}{\partial{z}} \\ \frac{y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{vmatrix}

-Dan
Thanks. I corrected that now. You are correct. Curl of $\vec{f}$ is nonzero.
 
Last edited: