Chisigma's comparison with an integral is an extremely strong heuristic indication that $$\sum_{n=1}^{N} \frac{1}{n^{1+i}}$$ oscillates as $N\to\infty$ (not converging, but also not tending to infinity, just gently oscillating between two limits). Strictly speaking, as ZaidAlyafey has pointed out, the integral test can only be used for series of positive terms, so it cannot be applied here. I think it is quite hard to give a rigorous proof that the series diverges. Here is my attempt.
The $n$th term of the series is $\frac1ne^{-i\log n} = \frac1n(\cos\log n - i\sin\log n)$. To prove that the series diverges, it will be enough to show that its real part $$\sum_{n=1}^\infty \tfrac1n\cos\log n$$ diverges.
The function $\cos x$ is positive if $x$ is within $\frac\pi2$ of an even multiple of $\pi$, and negative if $x$ is within $\frac\pi2$ of an odd multiple of $\pi$. More precisely, $\cos x > \frac12$ if $x$ lies in the interval from $2k\pi - \frac\pi3$ to $2k\pi + \frac\pi3$, for some integer $k$. The function $\log n$ increases extremely slowly, so there will be long runs of $n$ during which $\log n$ stays within one of those intervals, ensuring that $\cos \log n > \frac12$.
If we exponentiate the condition $2k\pi - \frac\pi3 < \log n < 2k\pi + \frac\pi3$, it says that $\exp\bigl(2k\pi - \frac\pi3\bigr) < n < \exp\bigl(2k\pi + \frac\pi3\bigr)$. For each $n$ in that interval, $\cos\log n$ will be greater than $\frac12$. Also, $\frac1n$ will be greater than $$\frac1{\exp\bigl(2k\pi + \frac\pi3\bigr)} = \frac1{e^{2k\pi}e^{\pi/3}}.$$ The number of terms in that interval is $\exp\bigl(2k\pi + \frac\pi3\bigr) - \exp\bigl(2k\pi - \frac\pi3\bigr) = e^{2k\pi}(e^{\pi/3} - e^{-\pi/3})$ (actually, the number of terms has to be an integer, but it will be the integer part of that last expression, or something close enough to make no difference). Therefore the sum of the terms in that interval will be $$\sum_{\exp(2k\pi - \frac\pi3) < n < \exp(2k\pi + \frac\pi3)}\frac1n\cos\log n > \frac{ e^{2k\pi}(e^{\pi/3} - e^{-\pi/3})}{2e^{2k\pi}e^{\pi/3}} = \tfrac12\bigl(1 - e^{-2\pi/3}\bigr) \approx 0.438.$$
In conclusion, there are infinitely many intervals during which the sum $$S_N = \sum_{n=1}^N \tfrac1n \cos \log n$$ increases by at least $0.438$ (and similarly infinitely many intervals during which it decreases by at least that amount). Therefore $$\lim_{N\to\infty}S_N$$ does not exist: the series diverges.