MHB Proving Divisibility of 5c+9d and 3c+10d by 23

  • Thread starter Thread starter Petek
  • Start date Start date
  • Tags Tags
    Divisibility
AI Thread Summary
The discussion focuses on proving that if 5c + 9d is divisible by 23, then 3c + 10d is also divisible by 23, where c and d are integers. Participants share solutions, with one user acknowledging a second approach that involves elementary number theory and Diophantine equations. The conversation highlights the collaborative nature of problem-solving in mathematics, with users expressing gratitude for each other's contributions. The thread emphasizes the importance of exploring multiple methods to reach a solution. Overall, the discussion showcases the interplay between different mathematical techniques in proving divisibility.
Petek
Gold Member
Messages
405
Reaction score
37
Let c and d be integers. Suppose that 5c + 9d is divisible by 23. Show that 3c + 10d also is divisible by 23.
 
Mathematics news on Phys.org
5c + 9d is divisible by 23
multiplying by 15
75c + 135d is divisible by 23

subtracting 69c + 115d a multiple of 23 we have

6c + 20d is divisible by by 23

or 2(3c+ 10d) is divisible by by 23

as 2 is not divisible by 23 so 3c + 10d is divisible by 23
 
@kaliprasad Thanks for your solution. In addition to yours, I found a second solution that requires more knowledge about elementary number theory. As a hint, it uses facts about Diophantine equations. I'll post again in a few days if no one finds what I was thinking of.
 
First observe that $5^{-1}\equiv -9\pmod{23}$. That is because $5\cdot -9\equiv -45 \equiv 1\pmod{23}$.

That fact that $5c+9d$ is divisible by $23$ means:
\[ 5c + 9d\equiv 0\pmod{23}\implies c\equiv 5^{-1}\cdot -9d\pmod{23}\implies c\equiv -9\cdot -9 d\equiv 81 d\equiv 12d\pmod{23} \]
Therefore:
\[ 3c + 10d \equiv 3\cdot 12d+10d\equiv 46 d\equiv 0 \pmod{23} \]
So $3c + 10d$ is also divisible by $23$.
 
The solutions of $23\mid 5c+9d$ are $c=-9+23k$ and $d=5+23m$.
Substitute in $3c+10d$ to find $3(-9+23k)+10(5+23m)=-23+23(3k+10m)$, which is divisible by $23$.
 
Last edited:
Klass' second solution is the alternate one that I had in mind. Thanks to all for their contributions.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top