MHB Proving Divisibility of 5c+9d and 3c+10d by 23

  • Thread starter Thread starter Petek
  • Start date Start date
  • Tags Tags
    Divisibility
AI Thread Summary
The discussion focuses on proving that if 5c + 9d is divisible by 23, then 3c + 10d is also divisible by 23, where c and d are integers. Participants share solutions, with one user acknowledging a second approach that involves elementary number theory and Diophantine equations. The conversation highlights the collaborative nature of problem-solving in mathematics, with users expressing gratitude for each other's contributions. The thread emphasizes the importance of exploring multiple methods to reach a solution. Overall, the discussion showcases the interplay between different mathematical techniques in proving divisibility.
Petek
Gold Member
Messages
405
Reaction score
37
Let c and d be integers. Suppose that 5c + 9d is divisible by 23. Show that 3c + 10d also is divisible by 23.
 
Mathematics news on Phys.org
5c + 9d is divisible by 23
multiplying by 15
75c + 135d is divisible by 23

subtracting 69c + 115d a multiple of 23 we have

6c + 20d is divisible by by 23

or 2(3c+ 10d) is divisible by by 23

as 2 is not divisible by 23 so 3c + 10d is divisible by 23
 
@kaliprasad Thanks for your solution. In addition to yours, I found a second solution that requires more knowledge about elementary number theory. As a hint, it uses facts about Diophantine equations. I'll post again in a few days if no one finds what I was thinking of.
 
First observe that $5^{-1}\equiv -9\pmod{23}$. That is because $5\cdot -9\equiv -45 \equiv 1\pmod{23}$.

That fact that $5c+9d$ is divisible by $23$ means:
\[ 5c + 9d\equiv 0\pmod{23}\implies c\equiv 5^{-1}\cdot -9d\pmod{23}\implies c\equiv -9\cdot -9 d\equiv 81 d\equiv 12d\pmod{23} \]
Therefore:
\[ 3c + 10d \equiv 3\cdot 12d+10d\equiv 46 d\equiv 0 \pmod{23} \]
So $3c + 10d$ is also divisible by $23$.
 
The solutions of $23\mid 5c+9d$ are $c=-9+23k$ and $d=5+23m$.
Substitute in $3c+10d$ to find $3(-9+23k)+10(5+23m)=-23+23(3k+10m)$, which is divisible by $23$.
 
Last edited:
Klass' second solution is the alternate one that I had in mind. Thanks to all for their contributions.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top