- #1
lfdahl
Gold Member
MHB
- 749
- 0
Prove the existence of a positive integer divisible by $2019$ the sum of whose decimal digits is $2019$.
Source: Nordic Math. Contest
Source: Nordic Math. Contest
Last edited:
[sp]$2019$ has digital sum $12$. Twice $2019$ is $4038$, which has digital sum $15$. Also, $$2019 = 15 + 2004 = 15 + 12\cdot167.$$ So the number $$4038\;\overbrace{2019\;2019\;\ldots\;2019}^{167\text{ blocks}},$$ whose decimal expansion consists of $4038$ followed by $167$ blocks of $2019$, has decimal sum $2019$. It is clearly a multiple of $2019$, the quotient being $$2\;\overbrace{0001\;0001\;\ldots\;0001}^{167\text{ blocks}}.$$Prove the existence of a positive integer divisible by $2019$ the sum of whose decimal digits is $2019$.
Source: Nordic Math. Contest