MHB Proving Divisibility of Polynomials in Field Extensions

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $K/F$ be a field extension, $f,g\in F[X]$. I want to show that if $g\mid f$ in $K[X]$, then $g\mid f$ also in $F[X]$.

Suppose that $g\mid f$ in $K[X]$. Then $f=g\cdot h$, where $h\in K[X]$. We have to show that $h\in F[X]$.
Could you give me some hints how we could show that? (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
Hey! :o

Let $K/F$ be a field extension, $f,g\in F[X]$. I want to show that if $g\mid f$ in $K[X]$, then $g\mid f$ also in $F[X]$.

Suppose that $g\mid f$ in $K[X]$. Then $f=g\cdot h$, where $h\in K[X]$. We have to show that $h\in F[X]$.
Could you give me some hints how we could show that? (Wondering)
Hint: Use division algorithm for the polynomials $f$ and $g$ in $F[x]$.
 
caffeinemachine said:
Hint: Use division algorithm for the polynomials $f$ and $g$ in $F[x]$.

Applying the division algorithm for the polynomials $f$ and $g$ in $F[x]$, we have $$f=gq+r$$ where $q,r\in F[x]$ with $\deg g>\deg r$.

We have that $g\mid f$ in $K[x]$, so $f=gh$, where $h\in K[x]$.

Therefore, we have the following:
$$r=f-gq=gh-gq=g(h-q)$$
We have that $g\neq 0$.
So, if $r\neq 0$ then $h-q\neq 0$. We have that $$\deg r=\deg (g(h-q))=\deg g+\deg (h-q)>\deg r+\deg (h-q) \Rightarrow \deg (h-q)<0$$ a contradiction.

Therefore, it must be $r=0$, i.e., $f=gq$ in $F[x]$, i.e., $g\mid f$ in $F[x]$.

Is everything correct? Could I improve something? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 24 ·
Replies
24
Views
696
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 13 ·
Replies
13
Views
960
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
4
Views
2K
Replies
48
Views
4K
  • · Replies 16 ·
Replies
16
Views
4K