MHB Proving First Order Logic in Machover's Text

Click For Summary
The discussion focuses on proving specific first-order logic statements as outlined in Maurice Machover's text. Participants express difficulty in understanding the implications of the statements, particularly the conditions under which certain logical equivalences hold. Key points include the interpretation of the entailment relations and the substitution of terms in logical formulas. The need for clarity in the application of set theory principles to these proofs is emphasized. Overall, the conversation highlights the complexities involved in formal logic and the importance of precise definitions and operations.
pooj4
Messages
4
Reaction score
0
Trouble working through Set theory, Logic, and their Limitations by Maurice Machover. Particularly these

1. $\sigma \vDash \alpha \rightarrow \forall x\alpha$ where $x$ does not occur in a free $\alpha$

2. $\sigma \vDash s_1 = t_1 \rightarrow ... \rightarrow s_n = t_n \rightarrow fs_1...s_n=ft_1...t_n$

3. $\sigma \vDash \forall x \alpha \rightarrow \alpha(x/t)$ (appealing to the fact that generally $\alpha(x/t)^\sigma = {\alpha}^{\sigma(x/t^\sigma )})$
 
Physics news on Phys.org
What exactly has to be done?
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...

Similar threads