evinda
Gold Member
MHB
- 3,741
- 0
Hello! :)
Knowing that $\forall k,n \in \mathbb{Z}_{\geq 0} : C(n,0)=1, C(n,k)=0 \text{ for } k>n, C(n,k)=C(n-1,k)+C(n-1,k-1) \text{ for } 1 \leq k \leq n$
show that $\forall 1\leq k \leq n, n \in \mathbb{N}, C(n,k)=\frac{n!}{k!(n-k)!}$
That's what I have done:
For $n=1: C(1,k)=\frac{1}{k!(1-k)!} $ and as $1 \leq k \leq 1 \Rightarrow k=1$,so $C(1,k)=\frac{1}{k!(1-k)!}=1$ $\checkmark$ , because $C(1,1)=C(0,1)+C(0,0)=0+1=1$
We suppose that $C(n,k)=\frac{n!}{k!(n-k)!}, \forall 1 \leq k \leq n$
We want to show that $C(n+1,k)=\frac{(n+1)!}{k!(n+1-k)!}, \forall 1 \leq k \leq n+1$$C(n+1,k)=C(n,k)+C(n,k-1)=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}= \cdots =\frac{(n+1)!}{k!(n+1-k)!} \checkmark $
So, the relation $C(n,k)=\frac{n!}{k!(n-k)!} \text{ stands } \forall 1 \leq k \leq n, \forall n \in \mathbb{N}$.
Is this right? In my textbook, to show that $C(n+1,k)=\frac{(n+1)!}{k!(n+1-k)!}, \forall 1 \leq k \leq n+1$,they do it like that:
- $k=n+1$: $C(n+1,n+1)=C(n,n+1)+C(n,n)=1 \text{ and } \frac{(n+1)!}{(n+1)!0!}=1$, so $C(n+1,n+1)=\frac{(n+1)!}{(n+1)!0!}$
- $2 \leq k \leq n: C(n+1,k)=C(n,k)+C(n,k-1)= \cdots \frac{(n+1)!}{k!(n+1-k)!}$
- $k=1: C(n+1,1)=C(n,1)+C(n,0)=\frac{n!}{1!(n-1)!}+1=n+1$
Knowing that $\forall k,n \in \mathbb{Z}_{\geq 0} : C(n,0)=1, C(n,k)=0 \text{ for } k>n, C(n,k)=C(n-1,k)+C(n-1,k-1) \text{ for } 1 \leq k \leq n$
show that $\forall 1\leq k \leq n, n \in \mathbb{N}, C(n,k)=\frac{n!}{k!(n-k)!}$
That's what I have done:
For $n=1: C(1,k)=\frac{1}{k!(1-k)!} $ and as $1 \leq k \leq 1 \Rightarrow k=1$,so $C(1,k)=\frac{1}{k!(1-k)!}=1$ $\checkmark$ , because $C(1,1)=C(0,1)+C(0,0)=0+1=1$
We suppose that $C(n,k)=\frac{n!}{k!(n-k)!}, \forall 1 \leq k \leq n$
We want to show that $C(n+1,k)=\frac{(n+1)!}{k!(n+1-k)!}, \forall 1 \leq k \leq n+1$$C(n+1,k)=C(n,k)+C(n,k-1)=\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!}= \cdots =\frac{(n+1)!}{k!(n+1-k)!} \checkmark $
So, the relation $C(n,k)=\frac{n!}{k!(n-k)!} \text{ stands } \forall 1 \leq k \leq n, \forall n \in \mathbb{N}$.
Is this right? In my textbook, to show that $C(n+1,k)=\frac{(n+1)!}{k!(n+1-k)!}, \forall 1 \leq k \leq n+1$,they do it like that:
- $k=n+1$: $C(n+1,n+1)=C(n,n+1)+C(n,n)=1 \text{ and } \frac{(n+1)!}{(n+1)!0!}=1$, so $C(n+1,n+1)=\frac{(n+1)!}{(n+1)!0!}$
- $2 \leq k \leq n: C(n+1,k)=C(n,k)+C(n,k-1)= \cdots \frac{(n+1)!}{k!(n+1-k)!}$
- $k=1: C(n+1,1)=C(n,1)+C(n,0)=\frac{n!}{1!(n-1)!}+1=n+1$