Proving inequalities using calculus

Click For Summary
SUMMARY

The forum discussion centers on proving inequalities using calculus, specifically demonstrating that \(2 < e < 3\) through integral comparisons. Participants utilize the integral \(\int_1^2 \frac{1}{t} dt\) and \(\int_1^3 \frac{1}{t} dt\) to establish bounds without logarithmic functions. Key techniques discussed include Jensen's inequality and Riemann sums, with a focus on the convexity of the function \(f(t) = \frac{1}{t}\) to validate the inequalities. The conversation highlights the importance of understanding left and right Riemann sums in approximating integrals.

PREREQUISITES
  • Understanding of integral calculus, specifically definite integrals.
  • Familiarity with Riemann sums and their applications in approximating areas under curves.
  • Knowledge of Jensen's inequality and its implications for convex functions.
  • Basic understanding of the properties of the exponential function and its relationship to integrals.
NEXT STEPS
  • Study the properties of convex functions and their applications in inequalities.
  • Learn about Riemann sums and how to apply them to different types of functions.
  • Explore the relationship between integrals and the exponential function, particularly in the context of limits.
  • Investigate other inequalities that can be proven using calculus, such as those involving logarithmic functions.
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced calculus concepts, particularly those focusing on inequalities and integral calculus techniques.

Poly1
Messages
32
Reaction score
0
This might sound an odd/inappropriate request, but could someone post some inequalities that can be proven using calculus?
 
Physics news on Phys.org
here's one you can try.

prove:

$$\int_1^2 \frac{1}{t}\ dt < 1 < \int_1^3 \frac{1}{t}\ dt$$

to conclude that $2 < e < 3$.

oh, and...no fair using logarithms (pretend you've never heard of them).
 
Deveno said:
here's one you can try.

prove:

$$\int_1^2 \frac{1}{t}\ dt < 1 < \int_1^3 \frac{1}{t}\ dt$$

to conclude that $2 < e < 3$.

oh, and...no fair using logarithms (pretend you've never heard of them).

Is this right for the first part of the inequality? Drawing the graph of $y = \frac{1}{t}$ and $y = 1$ on the interval $t \in [1, 2]$ we see that $\int_{1}^{2}\frac{1}{t} \ dt < \int_{1}^{2}\ dt = 1$ (I posted a diagram but it wasn't rendering well). For the second part, I found the following online:

Jensen's inequality: Let $f(x)$ be a convex function on $[a, b]$. Then $f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a}\int_{a}^{b}f(x)\ dx$.

It also said that in the case where the function strictly convex we have $<$ rather than $\le$.

Let $f(t) = \frac{1}{t}$. Then $\displaystyle f''(t) = \frac{2}{t^3} > 0$ for $t\in\mathbb{R}^+$. Therefore $f(t)$ is strictly convex on $[1, 3]$.

$ \displaystyle \frac{2}{3+1} < \frac{1}{3-1}\int_{1}^{3}\frac{1}{t}\ dt \implies \frac{1}{2} < \frac{1}{2} \int_{1}^{3} \frac{1}{t} \ dt \implies 1 < \int_{1}^{3} \frac{1}{t} \ dt.$ Did I get that right?
 
Last edited:
I'll try to prove the result that I've used. (Thinking)
 
Last edited:
You might also think in terms of a Riemann sum definition of the definite integral.
 
Poly said:
$ \displaystyle \frac{2}{3+1} < \frac{1}{3-1}\int_{1}^{3}f(t)\ dt \implies \frac{1}{2} = \frac{1}{2} \int_{1}^{3} \frac{1}{t} \ dt \implies 1 < \int_{1}^{3} \frac{1}{t} \ dt.$ Did I get that right?

You have a small typo but this part looks right if you replace an "=" with "<" in one place.

$ \displaystyle \frac{2}{3+1} < \frac{1}{3-1}\int_{1}^{3}f(t)\ dt \implies \frac{1}{2} < \frac{1}{2} \int_{1}^{3} \frac{1}{t} \ dt \implies 1 < \int_{1}^{3} \frac{1}{t} \ dt.$
 
Thanks, guys.

MarkFL said:
You might also think in terms of a Riemann sum definition of the definite integral.
I get $\displaystyle \int_{1}^{3}\frac{1}{t} \ dt = \lim_{n\to\infty}2\sum_{i=1}^{n}\frac{1}{n+2i}$ I'm not too sure what to do next, though.

My guess is this is greater than $ \displaystyle 2\sum_{i=1}^{7}\frac{1}{7+2i} > 1$ but I really don't know. (Thinking)
 
I think there's a problem with your setup in the above post, Poly. In the final summation you have $n=7$ which is using 7 sub-intervals to approximate the area (assuming the other part is correct, which I don't think it is). You need to find the sum, just as you wrote before, for $n \rightarrow \infty$.

The way to calculate a definite integral using Riemann sums is by the following:

[math]\int_{a}^{b}f(x)dx=\lim_{n \rightarrow \infty} \sum_{k=1}^{n}f(x_k) \Delta x[/math], where [math]\Delta x = \frac{b-a}{n}[/math] and $x_k=a+k\Delta x$.

So for your problem I believe (but am not 100% sure) that the setup is as follows:

For [math]f(t)=\frac{1}{t}[/math], [math]\int_{1}^{3} \frac{1}{t}dt=\lim_{n \rightarrow \infty} \sum_{k=1}^{n} f \left( 1+\frac{2k}{n} \right) \left( \frac{2}{n} \right)[/math]

This is where I'll stop and let someone else confirm. Maybe this is where MarkFL was going with his suggestion.
 
Okay, I thought I was meant to approximate the area and show that it goes over $1$. (Doh)

I think your set-up and mine are the same since $\displaystyle f(t) = \frac{1}{t}$ therefore $\displaystyle f \left( 1+\frac{2k}{n}\right) = \frac{1}{1+\frac{2k}{n}}.$

I simplified but didn't say so. Sorry about the confusion.
 
  • #10
Poly said:
Okay, I thought I was meant to approximate the area and show that it goes over $1$. (Doh)

I think your set-up and mine are the same since $\displaystyle f(t) = \frac{1}{t}$ therefore $\displaystyle f \left( 1+\frac{2k}{n}\right) = \frac{1}{1+\frac{2k}{n}}.$

Hmm, let me continue to simplify that. You might be right!

[math]\frac{1}{1+\frac{2k}{n}}=\frac{1}{\frac{n+2k}{n}}=\frac{n}{n+2k}[/math]

So now we take [math]\left( \frac{n}{n+2k} \right) \left( \frac{2}{n} \right)=\frac{2}{n+2k}[/math]

Ok, it seems you were correct with the set up! My apologies. Since I didn't see your work and the simplified form is hard to see without doing the work, I assumed incorrectly (Blush).

I don't think taking 7 sub-intervals is enough unless you also show that the approximation using 7 sub-intervals is larger than the true area, which opens up another thing to justify!
 
  • #11
Sorry, yes, I should have posted the steps to avoid confusion.

You're right I didn't think through my 7 sub intervals guess (Rofl)
 
  • #12
I was reading the wiki article on Riemann sums and it says

The left Riemann sum amounts to an overestimation if f is monotonically decreasing on this interval, and an underestimation if it is monotonically increasing.


We're using a left Riemann sum, so our sum can never exceed the true value? If we manually calculate the sum of the first 7 sub intervals (and this is indeed greater than 1 according to wolfram), wouldn't that be enough?
 
  • #13
By the way, I enjoyed that question. Thanks guys.

Does anyone know more inequalities that be proven with calculus?

I found two that look like they could use some calculus (Rofl)

1. $x(1+x)^{-1} < \ln(1+x) < x$ where $-1 < x, \ x \ne 0$.

2. $\alpha (x-1) < x^{\alpha}-1 < \alpha x^{\alpha-1}(x-1)$ where $1 < x, \ 1 < \alpha$

Not sure what to differentiate or integrate though. (Thinking)
 
  • #14
Jameson said:
...
This is where I'll stop and let someone else confirm. Maybe this is where MarkFL was going with his suggestion.

Yes, exactly.

Consider the left sum:

$\displaystyle \int_1^a\frac{1}{t}\,dt=\lim_{n\to\infty}\left[\sum_{k=0}^{n-1}\left(f(t_k)\Delta t \right) \right]$

where:

$\displaystyle \Delta t=\frac{a-1}{n}$

$\displaystyle t_k=1+k\Delta t=1+k\frac{a-1}{n}=\frac{n+(a-1)k}{n}$

and so:

$\displaystyle \int_1^a\frac{1}{t}\,dt=(a-1)\lim_{n\to\infty}\left(\sum_{k=0}^{n-1}\frac{1}{n+(a-1)k} \right)$

However, now that I look at it, this is only useful to show that:

$\displaystyle \int_1^2\frac{1}{t}\,dt<\int_1^3\frac{1}{t}\,dt$

Let's take a look at this from a differential equations perspective:

$\displaystyle x(y)=\int_1^y\frac{1}{t}\,dt$

Differentiate with respect to y:

$\displaystyle \frac{dx}{dy}=\frac{1}{y}$

Inverting both sides, we now have the IVP:

$\displaystyle \frac{dy}{dx}=y$ where $\displaystyle y(0)=1$

Euler's method gives rise to the recursion:

$\displaystyle y_{n+1}=\left(1+\frac{x_n}{n} \right)^n$

and so:

$\displaystyle y=\lim_{n\to\infty}y_{n+1}=e^{x}$

Then, we may write:

$\displaystyle x=\int_1^{e^x}\frac{1}{t}\,dt$

Hence, the inequality becomes:

$\displaystyle \int_1^{2}\frac{1}{t}\,dt<\int_1^{e}\frac{1}{t}\,dt<\int_1^{3}\frac{1}{t}\,dt$

Since $\displaystyle \frac{1}{t}>0$ where $\displaystyle t\in[1,\infty)$ then it follows that:

$\displaystyle 2<e<3$

edit: Now that I review this, I have not shown the inequality is true, I have assumed it to be true. (Worried)
 
Last edited:
  • #15
if you are summing over k = 0 to 6, that is a "left-hand sum" (over-estimate).

you are actually using "right-hand sums" (k = 1 to 7), which are under-estimates. this is good, since this means the actual sum (the integral) is larger, which is what you WANT.
 
  • #16
Deveno said:
if you are summing over k = 0 to 6, that is a "left-hand sum" (over-estimate).

you are actually using "right-hand sums" (k = 1 to 7), which are under-estimates. this is good, since this means the actual sum (the integral) is larger, which is what you WANT.
Oh I see I mixed the two up. Do you have another delicious question perhaps? (Thinking)
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
3K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K