MHB Proving Inequality with Positive Real Numbers $x,\,y,\,z$

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be positive real numbers such that $xy+yz+zx=3$.

Prove the inequality $(x^3-x+5)(y^5-y^3+5)(z^7-z^5+5)\ge 125$.
 
Mathematics news on Phys.org
Here is the solution that I found online and would like to share with MHB:

For any real numbers $a$, the numbers $a-1,\,a^2-1,\,a^3-1,\,a^5-1$ are of the same sign.

Therefore

$(a-1)(a^2-1)\ge 0$, $(a^2-1)(a^3-1)\ge 0$ and $(a^2-1)(a^5-1)\ge 0$.

i.e.

$x^3-x^2-x+1\ge 0$

$y^5-y^3-y^2+1\ge 0$

$z^7-z^5-z^2+1\ge 0$

So it follows that

$x^3-x+5\ge x^2+4$, $y^5-y^3+5\ge y^2+4$ and $z^7-z^5+5\ge z^2+4$

Multiplying these inequalities gives

$(x^3-x+5)(y^5-y^3+5)(z^7-z^5+5)\ge(x^2+4)(y^2+4)(z^2+4) \tag{1}$

We will prove that

$(x^2+4)(y^2+4)(z^2+4)\ge 25(xy+yz+xz+2) \tag{2}$

We have

$\begin{align*}(x^2+4)(y^2+4)(z^2+4)&=x^2y^2z^2+4(x^2y^2+y^2z^2+z^2x^2)+16(x^2+y^2+z^2)+64\\&=x^2y^2z^2+(x^2+y^2+z^2)+2+4(x^2y^2+y^2z^2+z^2x^2+3)+15(x^2+y^2+z^2)+50---(3)\end{align*}$

By the inequalities

$(x-y)^2+(y-z)^2+(z-x)^2\ge 0$ and

$(xy-1)^2+(yz-1)^2+(zx-1)^2\ge 0$ we obtain

$x^2+y^2+z^2\ge xy+yz+zx\tag{4}$ and

$x^2y^2+y^2z^2+z^2x^2+3\ge 2(xy+yz+zx)\tag{5}$

We will prove that

$x^2y^2z^2+(x^2+y^2+z^2)+2\ge 2(xy+yz+zx)\tag{6}$

Note that if we have $a,\,b,\,c>0$ then $3abc+a^3+b^3+c^3\ge 2((ab)^{\dfrac{3}{2}}+(bc)^{\dfrac{3}{2}}+(ca)^{\dfrac{3}{2}})$.

Its proof followed by Schur's inequality and AM-GM inequality.

For $a=x^{\dfrac{2}{3}}$, $b=y^{\dfrac{2}{3}}$ and $c=z^{\dfrac{2}{3}}$, we deduce

$3(xyz)^{\dfrac{2}{3}}+x^2+y^2+z^2\ge 2(xy+yz+zx)$

Therefore, it suffices to prove that

$x^2y^2z^2+2\ge 3(xyz)^{\dfrac{2}{3}}$, which follows immediately by $AM>GM$.

Thus we have proved inequality (6).

Now, by (3), (4), (5) and (6) we obtain inequality (2).

Finally by (1) and (2) and since $xy+yz+zx=3$ we obtain the required inequality.

Equality occurs iff $x=y=z=1$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
12
Views
2K
Replies
1
Views
1K
Replies
3
Views
1K
Back
Top