MHB Proving L is an Ideal - Part of the Proof of Hilbert's Bass Theorem

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Proof Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit ad Foote's proof of Hilbert's Basis Theorem (See attached for the theorem and proof)

In the proof I is an ideal in R[x] L is the set of all leading coefficients of elements of I

D&F then proceed to prove that L is an ideal of R

Basically they establish that if elements a and b belong to L and r belongs to L then ra - b belongs to L.

D&F claim that this shows that L is an ideal but for an ideal we need to show that for a, b \in L and r \in R we have:

a - b \in L and ra \in R

My question is how exactly does ra - b \in L \Longrightarrow a - b \in L and ra \in R??

Peter[This has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
I am reading Dummit ad Foote's proof of Hilbert's Basis Theorem (See attached for the theorem and proof)

In the proof I is an ideal in R[x] L is the set of all leading coefficients of elements of I

D&F then proceed to prove that L is an ideal of R

Basically they establish that if elements a and b belong to L and r belongs to L then ra - b belongs to L.

D&F claim that this shows that L is an ideal but for an ideal we need to show that for a, b \in L and r \in R we have:

a - b \in L and ra \in R

My question is how exactly does ra - b \in L \Longrightarrow a - b \in L and ra \in R??
If you know that $ra-b\in L$ whenever $a,b\in L$ and $r\in R$ then in particular this will hold when $b=0$, so that $ra\in L$; and also when $r=1$ (the identity element of $R$) so that $a-b\in L$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top