MHB Proving Lagrange Theorem for Finite Group G

  • Thread starter Thread starter onie mti
  • Start date Start date
  • Tags Tags
    Lagrange Theorem
onie mti
Messages
42
Reaction score
0
given that G is a finite group.

1) if H is a subgroup of G then |H| divides |G|
2) if a in G the ord(a)/|G|

i could prove no 2 using no 1 where i said ord(a)=|<a>| and <a> is a subgroub of G so by 1
ord(a)/|G|how cAN I prove 1
 
Physics news on Phys.org
Re: langrange theorem

onie mti said:
given that G is a finite group.

1) if H is a subgroup of G then |H| divides |G|
2) if a in G the ord(a)/|G|

i could prove no 2 using no 1 where i said ord(a)=|<a>| and <a> is a subgroub of G so by 1
ord(a)/|G|how cAN I prove 1
Very briefly, the (left) cosets of H partition G into a number of sets all having the same size as H. So the order of G is the order of H times the number of cosets.
 
This is what you need to do to prove (1).

Step one:

Show that the map $f:H \to Ha$ for any $a \in G$, given by $f(h) = ha$ is bijective.

Step two:

Conclude that $|H| = |Ha|$ for all $a \in G$.

Step three:

Show that if $x \in Ha \cap Hb$, then $Ha = Hb$.

Step four:

Conclude that the distinct cosets of $H$ form a partition of $G$.

Step five:

Conclude that $G = H \cup Ha_1 \cup \cdots \cup Ha_{k-1}$ for $k$ distinct cosets of $H$ in $G$

(note that this uses the fact that $|G|$ is FINITE).

Step six:

Use steps four and five to conclude that:

$|G| = k\ast|H|$.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
2K
Replies
14
Views
3K
Replies
16
Views
4K
Replies
13
Views
574
Replies
1
Views
1K
Replies
24
Views
357
Replies
3
Views
440
Back
Top