MHB Proving Lagrange Theorem for Finite Group G

  • Thread starter Thread starter onie mti
  • Start date Start date
  • Tags Tags
    Lagrange Theorem
onie mti
Messages
42
Reaction score
0
given that G is a finite group.

1) if H is a subgroup of G then |H| divides |G|
2) if a in G the ord(a)/|G|

i could prove no 2 using no 1 where i said ord(a)=|<a>| and <a> is a subgroub of G so by 1
ord(a)/|G|how cAN I prove 1
 
Physics news on Phys.org
Re: langrange theorem

onie mti said:
given that G is a finite group.

1) if H is a subgroup of G then |H| divides |G|
2) if a in G the ord(a)/|G|

i could prove no 2 using no 1 where i said ord(a)=|<a>| and <a> is a subgroub of G so by 1
ord(a)/|G|how cAN I prove 1
Very briefly, the (left) cosets of H partition G into a number of sets all having the same size as H. So the order of G is the order of H times the number of cosets.
 
This is what you need to do to prove (1).

Step one:

Show that the map $f:H \to Ha$ for any $a \in G$, given by $f(h) = ha$ is bijective.

Step two:

Conclude that $|H| = |Ha|$ for all $a \in G$.

Step three:

Show that if $x \in Ha \cap Hb$, then $Ha = Hb$.

Step four:

Conclude that the distinct cosets of $H$ form a partition of $G$.

Step five:

Conclude that $G = H \cup Ha_1 \cup \cdots \cup Ha_{k-1}$ for $k$ distinct cosets of $H$ in $G$

(note that this uses the fact that $|G|$ is FINITE).

Step six:

Use steps four and five to conclude that:

$|G| = k\ast|H|$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
376
  • · Replies 26 ·
Replies
26
Views
689
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 4 ·
Replies
4
Views
365
  • · Replies 13 ·
Replies
13
Views
960
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K