MHB Proving LCM Inequality for Positive Integers

AI Thread Summary
For all positive integers m > n, it is proven that the inequality lcm(m,n) + lcm(m+1,n+1) > (2mn)/√(m-n) holds true. The proof begins with the definition of lcm in terms of gcd and establishes a relationship between lcm values and their gcds. By applying the AM-GM inequality, it is shown that the sum of the reciprocals of the gcds is bounded, leading to the conclusion that the product of the gcds divides m-n. Ultimately, it is demonstrated that the product of these gcds is less than or equal to m-n, thereby confirming the inequality. This proof effectively utilizes properties of gcd and lcm to validate the stated inequality.
pedja
Messages
14
Reaction score
0
For all positive integers $$m > n$$, prove that :

$$\operatorname{lcm}(m,n)+\operatorname{lcm}(m+1,n+1)>\frac{2mn}{\sqrt{m-n}}$$
 
Mathematics news on Phys.org
Remember that $\text{lcm}(x,y)=\displaystyle\frac{x\cdot y}{\gcd(x,y)}$ so we have

\[A(m,n):=\text{lcm}(m,n)+\text{lcm}(m+1,n+1) = \frac{m\cdot n}{\gcd(m,n)}+\frac{(m+1)\cdot (n+1)}{\gcd(m+1,n+1)}\]

and then clearly

\[A(m,n) > \frac{m\cdot n}{\gcd(m,n)}+\frac{m\cdot n}{\gcd(m+1,n+1)} = m\cdot n \cdot \left( \tfrac{1}{\gcd(m,n)}+\tfrac{1}{\gcd(m+1,n+1)} \right)\]

Now let us use the AM-GM inequality ( $x+y \geq 2\sqrt{x\cdot y}$ for $x,y\geq 0$) to get

\[\frac{1}{\gcd(m,n)}+\frac{1}{\gcd(m+1,n+1)} \geq \frac{2}{\sqrt{\gcd(m,n)\cdot \gcd(m+1,n+1)}}\]

Next note that if we get $\gcd(m,n)\cdot \gcd(m+1,n+1) \leq m-n$, we are done.

To prove it, note that $d_1 = \gcd(m,n) = \gcd(n,m-n)$ which divides $m-n$, and $d_2=\gcd(m+1,n+1)=\gcd(n+1,m-n)$ which also divides $m-n$. But $d_1$ divides $n$ and $d_2$ divides $n+1$ ... and $\gcd(n,n+1)=1$ :p so in fact $\gcd(d_1,d_2)=1$ !.

Hence $d_1\cdot d_2$ must divide $m-n$, and so $d_1\cdot d_2 \leq m - n$ completing the proof $\square$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K
Replies
5
Views
2K
Replies
7
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Back
Top