MHB Proving LCM Inequality for Positive Integers

Click For Summary
For all positive integers m > n, it is proven that the inequality lcm(m,n) + lcm(m+1,n+1) > (2mn)/√(m-n) holds true. The proof begins with the definition of lcm in terms of gcd and establishes a relationship between lcm values and their gcds. By applying the AM-GM inequality, it is shown that the sum of the reciprocals of the gcds is bounded, leading to the conclusion that the product of the gcds divides m-n. Ultimately, it is demonstrated that the product of these gcds is less than or equal to m-n, thereby confirming the inequality. This proof effectively utilizes properties of gcd and lcm to validate the stated inequality.
pedja
Messages
14
Reaction score
0
For all positive integers $$m > n$$, prove that :

$$\operatorname{lcm}(m,n)+\operatorname{lcm}(m+1,n+1)>\frac{2mn}{\sqrt{m-n}}$$
 
Mathematics news on Phys.org
Remember that $\text{lcm}(x,y)=\displaystyle\frac{x\cdot y}{\gcd(x,y)}$ so we have

\[A(m,n):=\text{lcm}(m,n)+\text{lcm}(m+1,n+1) = \frac{m\cdot n}{\gcd(m,n)}+\frac{(m+1)\cdot (n+1)}{\gcd(m+1,n+1)}\]

and then clearly

\[A(m,n) > \frac{m\cdot n}{\gcd(m,n)}+\frac{m\cdot n}{\gcd(m+1,n+1)} = m\cdot n \cdot \left( \tfrac{1}{\gcd(m,n)}+\tfrac{1}{\gcd(m+1,n+1)} \right)\]

Now let us use the AM-GM inequality ( $x+y \geq 2\sqrt{x\cdot y}$ for $x,y\geq 0$) to get

\[\frac{1}{\gcd(m,n)}+\frac{1}{\gcd(m+1,n+1)} \geq \frac{2}{\sqrt{\gcd(m,n)\cdot \gcd(m+1,n+1)}}\]

Next note that if we get $\gcd(m,n)\cdot \gcd(m+1,n+1) \leq m-n$, we are done.

To prove it, note that $d_1 = \gcd(m,n) = \gcd(n,m-n)$ which divides $m-n$, and $d_2=\gcd(m+1,n+1)=\gcd(n+1,m-n)$ which also divides $m-n$. But $d_1$ divides $n$ and $d_2$ divides $n+1$ ... and $\gcd(n,n+1)=1$ :p so in fact $\gcd(d_1,d_2)=1$ !.

Hence $d_1\cdot d_2$ must divide $m-n$, and so $d_1\cdot d_2 \leq m - n$ completing the proof $\square$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K