MHB Proving Orthocenter Property of Triangle ABC

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Property Triangle
Click For Summary
The discussion focuses on proving the orthocenter property of triangle ABC, specifically the equation HA² + BC² = HB² + AC² = HC² + AB². Participants note that the configuration of points forms a parallelogram, with PB being perpendicular to BC. This leads to the conclusion that HA² + BC² equals 4R², where R is the circumradius. The solution is acknowledged as clear and effective. The proof highlights the relationship between the orthocenter and the triangle's circumcircle.
Albert1
Messages
1,221
Reaction score
0
Point $H$ is the orthocenter of $\triangle ABC$

prove :$HA^2+BC^2=HB^2+AC^2=HC^2+AB^2$
 
Mathematics news on Phys.org
Albert said:
Point $H$ is the orthocenter of $\triangle ABC$

prove :$HA^2+BC^2=HB^2+AC^2=HC^2+AB^2$
hint:
A solutiopn of the diagrm of this problem is given,now it is obvious ,hope someone can solve it
 

Attachments

  • Othocenter.png
    Othocenter.png
    3.1 KB · Views: 105
Albert said:
hint:
A solutiopn of the diagrm of this problem is given,now it is obvious ,hope someone can solve it
Very nice solution.

It is clear that $PAHB$ is a parallelogram and that $PB$ is perpendicular to $BC$.

Thus $HA^2+BC^2=4R^2$, where $R$ is the radius of the circumcircle.
 
caffeinemachine said:
Very nice solution.

It is clear that $PAHB$ is a parallelogram and that $PB$ is perpendicular to $BC$.

Thus $HA^2+BC^2=4R^2$, where $R$ is the radius of the circumcircle.
yes, you got it !
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K