MHB Proving Properties of 2x2 Matrices

  • Thread starter Thread starter TheScienceAlliance
  • Start date Start date
  • Tags Tags
    Matrices Properties
TheScienceAlliance
Messages
6
Reaction score
0
1. A is a matrix of order 2x2 whose main diagonal's entries' sum is zero. Prove that A^2 is a scalar matrix.

2. Given: A and B are two matrices of order 2x2. Prove that the sum of the entries of the main diagonal of AB-BA is zero.

3. A, B and C are three matrices of order 2x2. Given: A^2 is a scalar matrix and the sum of the entries of the main diagonal of AB-BA is zero. Prove that C (AB-BA) ^2= (AB-BA) ^2*C?
 
Physics news on Phys.org
Hi and welcome to MHB! What have you tried for each of these? Which one would you like to start with?
 
MathHelpBoardsUser said:
1. A is a matrix of order 2x2 whose main diagonal's entries' sum is zero. Prove that A^2 is a scalar matrix.
A is of the form $\begin{bmatrix}a & b \\ c & -a\end{bmatrix}$ What do you get when you square that?
2. Given: A and B are two matrices of order 2x2. Prove that the sum of the entries of the main diagonal of AB-BA is zero.
Let $A= \begin{bmatrix}a & b \\ c & d\end{bmatrix}$ and let $B= \begin{bmatrix}p & q \\ r & s\end{bmatrix}$. What is AB- BA?

3. A, B and C are three matrices of order 2x2. Given: A^2 is a scalar matrix and the sum of the entries of the main diagonal of AB-BA is zero. Prove that C (AB-BA) ^2= (AB-BA) ^2*C?
If $A= \begin{bmatrix}a & b \\ c & d\end{bmatrix}$ then $A^2= \begin{bmatrix}a^2+ bc & ab+ bd \\ ac+ cd & bc+ d^2\end{bmatrix}$. Since $A^2$ is a "scalar matrix" $A^2= \begin{bmatrix}P & 0 \\ 0 & P^2\end{bmatrix}$ so $a^2+ bc= bc+ d^2= P$, $ab+ bd= ac+ cd= 0$.
 
Last edited by a moderator:
County Boy said:
A is of the form $\begin{bmatrix}a & b \\ c & -a\end{bmatrix}$ What do you get when you square that?
Let $A= \begin{bmatrix}a & b \\ c & d\end{bmatrix}$ and let $B= \begin{bmatrix}p & q \\ r & s\end{bmatrix}$. What is AB- BA?If $A= \begin{bmatrix}a & b \\ c & d\end{bmatrix}$ then $A^2= \begin{bmatrix}a^2+ bc & ab+ bd \\ ac+ cd & bc+ d^2\end{bmatrix}$. Since $A^2$ is a "scalar matrix" $A^2= \begin{bmatrix}P & 0 \\ 0 & P^2\end{bmatrix}$ so $a^2+ bc= bc+ d^2= P$, $ab+ bd= ac+ cd= 0$.

Thank you very much for the response, sir.
In regard to #2 -- I calculated AB-BA.
However, I did not see how the sum of the two entries in the diagonal equal zero.

I obtained the following entries:

a11= rb-cp
a22=qc-dp

How should I proceed?
 
MathHelpBoardsUser said:
Thank you very much for the response, sir.
In regard to #2 -- I calculated AB-BA.
However, I did not see how the sum of the two entries in the diagonal equal zero.

I obtained the following entries:

a11= rb-cp
a22=qc-dp

How should I proceed?
You need to look at that again.
I get [math](AB - BA)_{11} = (ap + br) - (ap + cq) = br - cq[/math] and [math](AB - BA)_{22} = (cq + ds) - (br + ds) = cq - br[/math]

-Dan
 
topsquark said:
You need to look at that again.
I get [math](AB - BA)_{11} = (ap + br) - (ap + cq) = br - cq[/math] and [math](AB - BA)_{22} = (cq + ds) - (br + ds) = cq - br[/math]

-Dan
I obtained the same result.
Thank you very much :)

Also, my bad. The "given" part in the 3rd question is not given.
The question is written as follows:

A, B and C are three matrices of order 2x2. Prove that C (AB-BA) ^2= (AB-BA) ^2*C.
You can use the results obtained in parts 1 and 2 in order to solve part 3.
Does this mean that A and B in part 3 are the same matrices used in parts 1 and 2 (as in, matrix's A diagonal's entries' sum is zero)?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top