Proving Sum of Cosines Simplifies to Trig Identity

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Cosine Summation
Click For Summary
SUMMARY

The sum of cosines, represented as $\sum\limits_{k = 0}^n\cos k\theta$, simplifies to the trigonometric identity $\frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta$. This conclusion is derived using the relationship between complex exponentials and trigonometric functions, specifically through the formula $\text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)$. The real part of the complex expression is calculated, leading to the final simplified form.

PREREQUISITES
  • Understanding of complex numbers and Euler's formula
  • Familiarity with trigonometric identities
  • Knowledge of summation notation and series
  • Basic skills in manipulating complex fractions
NEXT STEPS
  • Study the derivation of trigonometric identities using complex exponentials
  • Learn about the properties of the sine and cosine functions in series
  • Explore advanced topics in Fourier series and their applications
  • Investigate the relationship between complex analysis and trigonometry
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced trigonometric identities and their proofs will benefit from this discussion.

Dustinsfl
Messages
2,217
Reaction score
5
Prove that the $\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)$ simplifies to
$$
\sum\limits_{k = 0}^n\cos k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta
$$

So I have that the real part is
$$
\frac{1-\sin^2\theta + \cos\theta\cos(n+1)\theta-\cos\theta-\cos(n+1)\theta}{4\sin^2\frac{\theta}{2}}
$$

However, I don't see which trig identities will help here.
 
Physics news on Phys.org
dwsmith said:
Prove that the $\sum\limits_{k = 0}^n\cos k\theta = \text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)$ simplifies to
$$
\sum\limits_{k = 0}^n\cos k\theta = \frac{\sin\left(\frac{n + 1}{2}\theta\right)}{\sin\frac{\theta}{2}}\cos\frac{n}{2}\theta
$$

So I have that the real part is
$$
\frac{1-\sin^2\theta + \cos\theta\cos(n+1)\theta-\cos\theta-\cos(n+1)\theta}{4\sin^2\frac{\theta}{2}}
$$

However, I don't see which trig identities will help here.

Hi dwsmith, :)

With reference to your thread http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have,

\[e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}\]

\[\Rightarrow e^{i(n+1)\theta} - 1 = 2ie^{i\frac{(n+1)\theta}{2}}\sin\frac{(n+1)\theta}{2}\]

Therefore,

\begin{eqnarray}

\text{Re}\left(\frac{1 - e^{i(n + 1)\theta}}{1 - e^{i\theta}}\right)&=&\text{Re}\left(\frac{2ie^{i \frac{(n+1)\theta}{2}}\sin\frac{(n+1)\theta}{2}}{2ie^{i \frac{\theta}{2}}\sin\frac{\theta}{2}}\right)\\

&=&\text{Re}\left(\frac{e^{\frac{i n\theta}{2}}\sin\frac{(n+1)\theta}{2}}{\sin\frac{ \theta}{2}}\right)\\

&=&\frac{\sin\frac{(n+1) \theta}{2}}{\sin\frac{ \theta}{2}}\text{Re}\left(e^{\frac{i n\theta}{2}}\right)\\

&=&\frac{\cos\frac{n\theta}{2}\sin\frac{(n+1) \theta}{2}}{\sin\frac{ \theta}{2}}

\end{eqnarray}

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
894
  • · Replies 4 ·
Replies
4
Views
1K