MHB Proving $\sum_{k=1}^{n}e^{ik\theta}$ Formula

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on proving the formula for the sum of a geometric series involving complex exponentials, specifically $$\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}$$. The proof begins by recognizing the series as a geometric series with a common ratio of \(e^{i\theta}\). A key step involves manipulating the series to derive the formula, using the identity \(e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}\). The final expression confirms the original formula, demonstrating the relationship between the sum and the sine function. This proof illustrates the application of geometric series concepts in complex analysis.
Dustinsfl
Messages
2,217
Reaction score
5
Prove the formula
$$
\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}
$$

I have a hint that says consider the expression $e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\left(n-\frac{1}{2}\right)\theta}$.
How can I get the second exponential in the numerator to have that expression?
 
Physics news on Phys.org
dwsmith said:
Prove the formula
$$
\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}
$$

I have a hint that says consider the expression $e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\left(n-\frac{1}{2}\right)\theta}$.
How can I get the second exponential in the numerator to have that expression?

Hi dwsmith, :)

We shall start from,

\[\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}\]

With reference to your thread, http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have obtained,

\[e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}\]

Therefore,

\begin{eqnarray}

\sum\limits_{k = 1}^ne^{ik\theta} &=& \frac{e^{i\theta}\left(e^{in\theta}-1\right)}{2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}}\\

&=& \frac{e^{\frac{i\theta}{2}}\left(e^{in\theta}-1\right)}{2i\sin\frac{\theta}{2}}\\

&=& \frac{e^{i\left(n + \frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}\\

\end{eqnarray}

\[\therefore \sum\limits_{k = 1}^ne^{ik\theta}=\frac{e^{i\left(n + \frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}\]

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Hi dwsmith, :)

We shall start from,

\[\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}\]

With reference to your thread, http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have obtained,

Shouldn't the sum be
$$
\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}
$$
where did the $e^{i\theta}$ in the front come from?
 
dwsmith said:
Shouldn't the sum be
$$
\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}
$$
where did the $e^{i\theta}$ in the front come from?

Note that \(\sum\limits_{k = 1}^ne^{ik\theta}\) is a geometric series with common ratio \(e^{i\theta}\). So do you know the sum of the first \(n\) terms of a geometric series?
 
Sudharaka said:
Note that \(\sum\limits_{k = 1}^ne^{ik\theta}\) is a geometric series with common ratio \(e^{i\theta}\). So do you know the sum of the first \(n\) terms of a geometric series?

$$
s_N = 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{in\theta}
$$
Multiple by $z$.
$$
e^{i\theta}s_N = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \cdots + e^{i(n+1)\theta}
$$
Next make the subtraction $s_N - e^{i\theta}s_N$.
So
$$
s_n(1 - e^{i\theta}) = 1 - e^{i(n+1)\theta}\iff s_n = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}.
$$
 
dwsmith said:
$$
s_N = 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{in\theta}
$$
Multiple by $z$.
$$
e^{i\theta}s_N = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \cdots + e^{i(n+1)\theta}
$$
Next make the subtraction $s_N - e^{i\theta}s_N$.
So
$$
s_n(1 - e^{i\theta}) = 1 - e^{i(n+1)\theta}\iff s_n = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}.
$$

Note that we are starting from \(k=1\). So the first term should be, \(e^{i\theta}\).
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
573
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K