Proving $\sum_{k=1}^{n}e^{ik\theta}$ Formula

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary

Discussion Overview

The discussion centers around proving the formula for the sum of complex exponentials, specifically the expression $$\sum_{k=1}^{n}e^{ik\theta}$$. Participants explore different approaches to derive the formula, considering both geometric series and algebraic manipulations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant suggests starting from the expression $$\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}$$ and references a previous thread for context.
  • Another participant questions the presence of the term $e^{i\theta}$ in the formula, proposing that the sum should instead be $$\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}$$.
  • Several participants note that the sum represents a geometric series with common ratio $e^{i\theta}$ and discuss the derivation of the sum of the first $n$ terms of a geometric series.
  • Participants provide algebraic manipulations to arrive at the proposed formula, but there is no consensus on the correct form of the sum.

Areas of Agreement / Disagreement

Participants express differing views on the correct formulation of the sum, with no consensus reached on the presence of the $e^{i\theta}$ term. The discussion remains unresolved regarding the correct approach to proving the formula.

Contextual Notes

Some participants rely on previous threads for context, which may introduce assumptions not explicitly stated in the current discussion. The derivation steps involve algebraic manipulations that are not universally agreed upon.

Dustinsfl
Messages
2,217
Reaction score
5
Prove the formula
$$
\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}
$$

I have a hint that says consider the expression $e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\left(n-\frac{1}{2}\right)\theta}$.
How can I get the second exponential in the numerator to have that expression?
 
Physics news on Phys.org
dwsmith said:
Prove the formula
$$
\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}
$$

I have a hint that says consider the expression $e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\left(n-\frac{1}{2}\right)\theta}$.
How can I get the second exponential in the numerator to have that expression?

Hi dwsmith, :)

We shall start from,

\[\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}\]

With reference to your thread, http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have obtained,

\[e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}\]

Therefore,

\begin{eqnarray}

\sum\limits_{k = 1}^ne^{ik\theta} &=& \frac{e^{i\theta}\left(e^{in\theta}-1\right)}{2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}}\\

&=& \frac{e^{\frac{i\theta}{2}}\left(e^{in\theta}-1\right)}{2i\sin\frac{\theta}{2}}\\

&=& \frac{e^{i\left(n + \frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}\\

\end{eqnarray}

\[\therefore \sum\limits_{k = 1}^ne^{ik\theta}=\frac{e^{i\left(n + \frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}\]

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Hi dwsmith, :)

We shall start from,

\[\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}\]

With reference to your thread, http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have obtained,

Shouldn't the sum be
$$
\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}
$$
where did the $e^{i\theta}$ in the front come from?
 
dwsmith said:
Shouldn't the sum be
$$
\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}
$$
where did the $e^{i\theta}$ in the front come from?

Note that \(\sum\limits_{k = 1}^ne^{ik\theta}\) is a geometric series with common ratio \(e^{i\theta}\). So do you know the sum of the first \(n\) terms of a geometric series?
 
Sudharaka said:
Note that \(\sum\limits_{k = 1}^ne^{ik\theta}\) is a geometric series with common ratio \(e^{i\theta}\). So do you know the sum of the first \(n\) terms of a geometric series?

$$
s_N = 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{in\theta}
$$
Multiple by $z$.
$$
e^{i\theta}s_N = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \cdots + e^{i(n+1)\theta}
$$
Next make the subtraction $s_N - e^{i\theta}s_N$.
So
$$
s_n(1 - e^{i\theta}) = 1 - e^{i(n+1)\theta}\iff s_n = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}.
$$
 
dwsmith said:
$$
s_N = 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{in\theta}
$$
Multiple by $z$.
$$
e^{i\theta}s_N = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \cdots + e^{i(n+1)\theta}
$$
Next make the subtraction $s_N - e^{i\theta}s_N$.
So
$$
s_n(1 - e^{i\theta}) = 1 - e^{i(n+1)\theta}\iff s_n = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}.
$$

Note that we are starting from \(k=1\). So the first term should be, \(e^{i\theta}\).
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
787
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K