Proving $\sum_{k=1}^{n}e^{ik\theta}$ Formula

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
SUMMARY

The formula for the sum of a geometric series involving complex exponentials is proven as follows: $$ \sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}. $$ The derivation begins with the geometric series representation and utilizes the identity \(e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}\) to simplify the expression. The final result confirms the relationship between the sum and the sine function, establishing a clear connection to Fourier series concepts.

PREREQUISITES
  • Understanding of geometric series and their sums
  • Familiarity with complex exponentials and Euler's formula
  • Knowledge of trigonometric identities, specifically sine functions
  • Basic principles of Fourier series
NEXT STEPS
  • Study the derivation of geometric series sums in complex analysis
  • Explore Euler's formula and its applications in signal processing
  • Learn about Fourier series and their convergence properties
  • Investigate the relationship between complex exponentials and trigonometric functions
USEFUL FOR

Mathematicians, physicists, and engineers interested in complex analysis, signal processing, and Fourier series applications will benefit from this discussion.

Dustinsfl
Messages
2,217
Reaction score
5
Prove the formula
$$
\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}
$$

I have a hint that says consider the expression $e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\left(n-\frac{1}{2}\right)\theta}$.
How can I get the second exponential in the numerator to have that expression?
 
Physics news on Phys.org
dwsmith said:
Prove the formula
$$
\sum_{k=1}^{n}e^{ik\theta} = \frac{e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}
$$

I have a hint that says consider the expression $e^{i\left(n+\frac{1}{2}\right)\theta}-e^{i\left(n-\frac{1}{2}\right)\theta}$.
How can I get the second exponential in the numerator to have that expression?

Hi dwsmith, :)

We shall start from,

\[\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}\]

With reference to your thread, http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have obtained,

\[e^{i\theta} - 1 = 2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}\]

Therefore,

\begin{eqnarray}

\sum\limits_{k = 1}^ne^{ik\theta} &=& \frac{e^{i\theta}\left(e^{in\theta}-1\right)}{2ie^{i\frac{\theta}{2}}\sin\frac{\theta}{2}}\\

&=& \frac{e^{\frac{i\theta}{2}}\left(e^{in\theta}-1\right)}{2i\sin\frac{\theta}{2}}\\

&=& \frac{e^{i\left(n + \frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}\\

\end{eqnarray}

\[\therefore \sum\limits_{k = 1}^ne^{ik\theta}=\frac{e^{i\left(n + \frac{1}{2}\right)\theta}-e^{i\frac{\theta}{2}}}{2i\sin\frac{\theta}{2}}\]

Kind Regards,
Sudharaka.
 
Last edited:
Sudharaka said:
Hi dwsmith, :)

We shall start from,

\[\sum\limits_{k = 1}^ne^{ik\theta} = \frac{e^{i\theta}\left(1 - e^{in\theta}\right)}{1 - e^{i\theta}}\]

With reference to your thread, http://www.mathhelpboards.com/f13/basics-fourier-series-1717/ we have obtained,

Shouldn't the sum be
$$
\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}
$$
where did the $e^{i\theta}$ in the front come from?
 
dwsmith said:
Shouldn't the sum be
$$
\sum\limits_{k = 1}^ne^{ik\theta} = \frac{\left(1 - e^{i(n+1)\theta}\right)}{1 - e^{i\theta}}
$$
where did the $e^{i\theta}$ in the front come from?

Note that \(\sum\limits_{k = 1}^ne^{ik\theta}\) is a geometric series with common ratio \(e^{i\theta}\). So do you know the sum of the first \(n\) terms of a geometric series?
 
Sudharaka said:
Note that \(\sum\limits_{k = 1}^ne^{ik\theta}\) is a geometric series with common ratio \(e^{i\theta}\). So do you know the sum of the first \(n\) terms of a geometric series?

$$
s_N = 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{in\theta}
$$
Multiple by $z$.
$$
e^{i\theta}s_N = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \cdots + e^{i(n+1)\theta}
$$
Next make the subtraction $s_N - e^{i\theta}s_N$.
So
$$
s_n(1 - e^{i\theta}) = 1 - e^{i(n+1)\theta}\iff s_n = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}.
$$
 
dwsmith said:
$$
s_N = 1 + e^{i\theta} + e^{2i\theta} + \cdots + e^{in\theta}
$$
Multiple by $z$.
$$
e^{i\theta}s_N = e^{i\theta} + e^{2i\theta} + e^{3i\theta} + \cdots + e^{i(n+1)\theta}
$$
Next make the subtraction $s_N - e^{i\theta}s_N$.
So
$$
s_n(1 - e^{i\theta}) = 1 - e^{i(n+1)\theta}\iff s_n = \frac{1 - e^{i(n+1)\theta}}{1 - e^{i\theta}}.
$$

Note that we are starting from \(k=1\). So the first term should be, \(e^{i\theta}\).
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
687
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K