Proving T is Continuous in a Complex Banach Space

Click For Summary

Discussion Overview

The discussion revolves around proving the continuity of a linear operator T in a complex Banach space, given the relationship defined by (T*f)(x)=f(Tx) for x in X and f in X*. Participants explore the implications of this definition and the necessary conditions for establishing continuity, considering various mathematical theorems and principles.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants question whether the definition of T* provides sufficient information to conclude that T is continuous.
  • Others suggest that additional conditions, such as the continuity of the map x ↦ f(Tx) for each f in X*, are necessary to prove T's continuity.
  • A few participants propose using the Uniform Boundedness Principle to establish continuity, arguing that the boundedness of certain mappings leads to the conclusion that T is continuous.
  • Some participants mention the Closed Graph theorem as a potential method for proving continuity, discussing its implications and how it relates to the definitions provided.
  • There is a suggestion that the continuity of T* implies that T is closed, which could lead to proving T's continuity through the Hahn-Banach theorem.

Areas of Agreement / Disagreement

Participants express differing views on whether the provided definition of T* is adequate for proving the continuity of T. While some believe additional conditions are necessary, others argue that the existing framework, combined with certain theorems, may suffice. The discussion remains unresolved regarding the best approach to take.

Contextual Notes

Participants note that the question lacks essential conditions that could clarify the relationship between T and T*. There is also mention of the dependence on the continuity of mappings and the implications of various theorems, such as the Uniform Boundedness Principle and the Closed Graph theorem, which are not fully explored.

Who May Find This Useful

This discussion may be useful for mathematicians and students interested in functional analysis, particularly those exploring properties of linear operators in Banach spaces and the application of continuity theorems.

Cairo
Messages
61
Reaction score
0
Let X be a complex Banach space and T in L(X,X) a linear operator. Assuming only that

(T*f)(x)=f(Tx), where x in X and f in X*

how can I prove that T is continuous?
 
Physics news on Phys.org
But (T*f)(x)=f(Tx) is the definition of T*. I don't see how this imposes any constraint on T.
 
Perhaps I should restate the final remark and say "how is this sufficient to show that T is continuous".
 
I don't think it suffices. Indeed, take any operator T and defined T* on L* by the equation (T*f)(x) = f(Tx). I don't see how defining T* tells us anything about T. Operator T does not even have to be linear to define T*.
 
dray said:
Let X be a complex Banach space and T in L(X,X) a linear operator. Assuming only that

(T*f)(x)=f(Tx), where x in X and f in X*

how can I prove that T is continuous?
As Evgeny.Makarov has pointed out, this question appears to be lacking some essential condition. My guess is that the question ought to be telling you that, for each f in X*, the map $x\mapsto f(Tx)$ is continuous. You could then use uniform boundedness to conclude that T is continuous.
 
Opalg said:
As Evgeny.Makarov has pointed out, this question appears to be lacking some essential condition. My guess is that the question ought to be telling you that, for each f in X*, the map $x\mapsto f(Tx)$ is continuous. You could then use uniform boundedness to conclude that T is continuous.

The question, stated in full is thus:

Let X be a complex Banach space and T in L(X,X), a linear operator not assumed continuous. You may take it without proof that

(T*f)(x)=f(Tx), where x in X and f in X* (1)

defines a linear operator T* in L(X*,X*). Note that, whilst the domain and codomain of T* is the space of linear continuous functionals on X, you should notassume that T* is continuous.

Now, show that if we assume only equation (1), then that is sufficient to prove that T is continuous.
Perhaps Hahn Banach and Closed Graph theorem?
 
dray said:
The question, stated in full is thus:

Let X be a complex Banach space and T in L(X,X), a linear operator not assumed continuous. You may take it without proof that

(T*f)(x)=f(Tx), where x in X and f in X* (1)

defines a linear operator T* in L(X*,X*). Note that, whilst the domain and codomain of T* is the space of linear continuous functionals on X, you should notassume that T* is continuous.

Now, show that if we assume only equation (1), then that is sufficient to prove that T is continuous.
That seems to agree with what I suggested. The missing information (which you have now supplied) is that T* belongs to L(X*,X*). In other words, for each f in X*, the map T*f is in X*, which means that it is a continuous linear functional on X.

With that information, you can start to think in terms of uniform boundedness.
 
I'm not that familiar with the Uniform Boundedness Principle, so wouldn't know where or how to apply this result to the question I'm afraid.
 
dray said:
I'm not that familiar with the Uniform Boundedness Principle, so wouldn't know where or how to apply this result to the question I'm afraid.
For each point $x$ in the unit ball $X_1$ of $X$, define a mapping $S_x:X^*\to\mathbb{C}$ (a linear functional on $X^*$) by $S_x(f) = T^*f(x)$. We are told that $T^*f$ is a continuous linear functional on $X$, and so $|T^*f(x)|\leqslant \|T^*f\|\|x\|$. Therefore $|S_x(f)| \leqslant \|T^*f\|\|x\|$, and $\displaystyle \sup_{x\in X_1}|S_x(f)| \leqslant \|T^*f\|.$

Thus $\displaystyle \sup_{x\in X_1}|S_x(f)|$ is bounded, with a bound $\|T^*f\|$ which on the face of it appears to depend on $f$. But the Uniform Boundedness theorem tells us that in fact this bound is uniform, in other words $\displaystyle \sup_{x\in X_1}\|S_x\| = K <\infty$. Hence $|f(Tx)| = |S_x(f)| \leqslant K\|f\|$ for all $f \in X^*$ and all $x\in X_1$. In particular, $\displaystyle \sup_{f\in X^*_1}|f(Tx)| \leqslant K$. It follows from the Hahn–Banach theorem that $\|Tx\|\leqslant K$ for all $x\in X_1$, in other words $T$ is bounded and therefore continuous.
 
  • #10
Opalg said:
For each point $x$ in the unit ball $X_1$ of $X$, define a mapping $S_x:X^*\to\mathbb{C}$ (a linear functional on $X^*$) by $S_x(f) = T^*f(x)$. We are told that $T^*f$ is a continuous linear functional on $X$, and so $|T^*f(x)|\leqslant \|T^*f\|\|x\|$. Therefore $|S_x(f)| \leqslant \|T^*f\|\|x\|$, and $\displaystyle \sup_{x\in X_1}|S_x(f)| \leqslant \|T^*f\|.$

Thus $\displaystyle \sup_{x\in X_1}|S_x(f)|$ is bounded, with a bound $\|T^*f\|$ which on the face of it appears to depend on $f$. But the Uniform Boundedness theorem tells us that in fact this bound is uniform, in other words $\displaystyle \sup_{x\in X_1}\|S_x\| = K <\infty$. Hence $|f(Tx)| = |S_x(f)| \leqslant K\|f\|$ for all $f \in X^*$ and all $x\in X_1$. In particular, $\displaystyle \sup_{f\in X^*_1}|f(Tx)| \leqslant K$. It follows from the Hahn–Banach theorem that $\|Tx\|\leqslant K$ for all $x\in X_1$, in other words $T$ is bounded and therefore continuous.

Thank you for replying to my question.

I had considered using the Closed Graph theorem but could only manage to show that (T*f)(x)=f(y). I'm not sure if you can even proceed from here to show that Tx=y and therefore deduce that T is continuous. Is it even possible?
 
Last edited by a moderator:
  • #11
dray said:
I had considered using the Closed Graph theorem but could only manage to show that (T*f)(x)=f(y). I'm not sure if you can even proceed from here to show that Tx=y and therefore deduce that T is continuous. Is it even possible?
That is a very good idea. In fact, the closed graph theorem gives a simpler proof than the uniform boundedness method.

Suppose that $x_n\to x$ and $Tx_n\to y$. The continuity of T*f shows (as you have noticed) that (T*f)(x)=f(y), for every f in X*. Therefore f(Tx)=f(y), or f(Tx-y)=0. Since that holds for all f in X*, it follows from the Hahn–Banach theorem that Tx=y. Thus T is closed and therefore continuous.
 
  • #12
Aha!

I never thought to use Hahn Banach.

Thanks
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K