A Proving that Levi-Civita tensor density is invariant

baba26
Messages
4
Reaction score
1
TL;DR Summary
It's a problem from the textbook Supergravity ( Freedman, Proeyen ). We are asked to prove that under any infinitesimal change in frame-fields, there is no change in the Levi-Civita tensor density i.e. the variation equals zero.
This is a problem from the textbook Supergravity ( by Daniel Z. Freedman and Antoine Van Proeyen ). I am trying to learn general relativity from this book. I am attempting to do the later part of the Exercise 7.14 ( on page 148 ). Basically it asks us to explicitly show that the Levi-Civita tensor density doesn't change under any variation of frame fields. I am supposed to use the formula: variation of determiant of matrix M = determinant * trace ( M_inverse * variation in M ). But I can not even think of how to begin with the problem. Any hint will be appreciated.
 
Physics news on Phys.org
For the frame field you have ##\delta e = e e^{\mu}_a \delta e^a_{\mu}## where ##e = \mathrm{det}(e^{\mu}_a)##, which you can use when you take the variation of ##\epsilon^{a_1 \dots} = e \epsilon^{b_1 \dots} ({e^{a_1}}_{b_1})(\dots)##
 
That ##\epsilon^{\mu\nu\rho\sigma}## is a actually a tensor is confirmed by the identity for the determinant of a ##4\times 4## matrix that

\begin{equation}

\epsilon'^{\mu'\nu'\rho'\sigma'}{\rm Det[L]}=L^{\mu'}_{\mu} L^{\nu'}_{\nu} L^{\rho'}_{\rho} L^{\sigma'}_{\sigma}\epsilon^{\mu\nu\rho\sigma}.

\end{equation}

This shows that ##\epsilon^{\mu\nu\rho\sigma}## is an idempotent pseudotensor of rank four.
 
Last edited:
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top