A Proving that Levi-Civita tensor density is invariant

baba26
Messages
4
Reaction score
1
TL;DR Summary
It's a problem from the textbook Supergravity ( Freedman, Proeyen ). We are asked to prove that under any infinitesimal change in frame-fields, there is no change in the Levi-Civita tensor density i.e. the variation equals zero.
This is a problem from the textbook Supergravity ( by Daniel Z. Freedman and Antoine Van Proeyen ). I am trying to learn general relativity from this book. I am attempting to do the later part of the Exercise 7.14 ( on page 148 ). Basically it asks us to explicitly show that the Levi-Civita tensor density doesn't change under any variation of frame fields. I am supposed to use the formula: variation of determiant of matrix M = determinant * trace ( M_inverse * variation in M ). But I can not even think of how to begin with the problem. Any hint will be appreciated.
 
Physics news on Phys.org
For the frame field you have ##\delta e = e e^{\mu}_a \delta e^a_{\mu}## where ##e = \mathrm{det}(e^{\mu}_a)##, which you can use when you take the variation of ##\epsilon^{a_1 \dots} = e \epsilon^{b_1 \dots} ({e^{a_1}}_{b_1})(\dots)##
 
That ##\epsilon^{\mu\nu\rho\sigma}## is a actually a tensor is confirmed by the identity for the determinant of a ##4\times 4## matrix that

\begin{equation}

\epsilon'^{\mu'\nu'\rho'\sigma'}{\rm Det[L]}=L^{\mu'}_{\mu} L^{\nu'}_{\nu} L^{\rho'}_{\rho} L^{\sigma'}_{\sigma}\epsilon^{\mu\nu\rho\sigma}.

\end{equation}

This shows that ##\epsilon^{\mu\nu\rho\sigma}## is an idempotent pseudotensor of rank four.
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top