Tensor analysis Definition and 38 Discussions

In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space (typically a Euclidean space or manifold). Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a pure number plus a direction, like velocity), a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.
Many mathematical structures called "tensors" are tensor fields. For example, the Riemann curvature tensor is not a tensor, as the name implies, but a tensor field: It is named after Bernhard Riemann, and associates a tensor to each point of a Riemannian manifold, which is a topological space.

View More On Wikipedia.org
  1. SH2372 General Relativity (8): Tensor operations

    SH2372 General Relativity (8): Tensor operations

  2. SH2372 General Relativity (7): Tensor components and coordinate transformations

    SH2372 General Relativity (7): Tensor components and coordinate transformations

  3. yucheng

    Unit Basis Components of a Vector in Tensorial Expressions?

    Divergence formula $$\vec{\nabla} \cdot \vec{A}= \frac{1}{\sqrt{G}} \frac{\partial}{\partial q^{j}} (A^{j} \sqrt{G})$$ If we express it in terms of the components of ##\vec{A}## in unit basis using $$A^{*j} = \sqrt{g^{jj}} A^{j}$$ , we get $$\vec{\nabla} \cdot \vec{A}= \frac{1}{\sqrt{G}}...
  4. George Keeling

    I Excellent 3D Graphics thing at math3d.org

    May I recommend math3d.org as a website for making 3D-Graphics for fresh_42's page on List of Online Calculators for Math, Physics, Earth and Other Curiosities. I also might recommend cloudconvert.com to make .gifs. It is simpler than ezgif.com, mainly because it is not so feature rich. Here...
  5. cianfa72

    I Differential k-form vs (0,k) tensor field

    Hi, I would like to ask for a clarification about the difference between a differential k-form and a generic (0,k) tensor field. Take for instance a (non simple) differential 2-form defined on a 2D differential manifold with coordinates ##\{x^{\mu}\}##. It can be assigned as linear combination...
  6. S

    I Proving ##\partial^{i} = g^{ik} \partial_{k}##

    Let ##\varphi## be some scalar field. In "The Classical Theory of Fields" by Landau it is claimed that $$ \frac{\partial\varphi}{\partial x_i} = g^{ik} \frac{\partial \varphi}{\partial x^k} $$ I wanted to prove this identity. Using the chain rule $$ \frac{\partial}{\partial x_{i}}=\frac{\partial...
  7. L

    I Physical parameters for spin 1/2 particles

    I am having trouble to understand what it means by "physically relevant real parameters" and how does it help us to specify a quantum system. Let say, we have a state of k half spin electrons? My guess is about the local phase of the spin, and this would make it 2^k parameters since each...
  8. F

    Find the tensor that carries out a transformation

    I got stuck in this calculation, I can't collect everything in terms of ##dx^{\mu}##. ##x'^{\mu}=\frac{x^{\mu}-x^2a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2x^2}## ##x'^{\mu}=\frac{x^{\mu}-g_{\alpha \beta}x^{\alpha}x^{\beta}a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2g_{\alpha \beta}x^{\alpha}x^{\beta}}##...
  9. K

    Show that a (1,2)-tensor is a linear function

    I know that a tensor can be seen as a linear function. I know that the tensor product of three spaces can be seen as a multilinear map satisfying distributivity by addition and associativity in multiplication by a scalar.
  10. Bright Liu

    How do I derive this vector calculus identity?

    ##(\nabla\times\vec B) \times \vec B=\nabla \cdot (\vec B\vec B -\frac 1 2B^2\mathcal I)-(\nabla \cdot \vec B)\vec B## ##\mathcal I## is the unit tensor
  11. Q

    I Constraints on Metric Tensor

    Aside from being symmetric, are there any other mathematical constraints on the metric?
  12. S

    Infinitesimal coordinate transformation of the metric

    I kinda know how to do this problem, it is just that I hit a sign problem. If I take the partial derivative of the coordinate transformation with respect to ##x'^\mu##, I get writing it first in the inverse form, ##x^\alpha = x'^\alpha - \epsilon^\alpha## ##\frac{\partial x^\alpha}{\partial...
  13. S

    Antisymmetry of the electromagnetic field tensor

    I am trying to answer exercise 5 but I am not sure I understand what the hint is implying, differentiate with respect to ##p_\alpha## and ##p_\beta##, I have done this but nothing is clicking. Also, what is the relevance of the hint "the constraint ##p^\alpha p_\alpha = m^2c^2## can be ignored...
  14. S

    Contracting one index of a metric with the inverse metric

    Since ##\nu## is contracted, we form the scalar product of the metric and inverse metric, ##g_{\mu\nu}g^{\nu\lambda} = (\vec{e_\mu} \cdot \vec{e_\nu}) \cdot (\vec{e^\nu} \cdot \vec{e^\lambda}) = \vec{e_\mu} \cdot (\vec{e_\nu} \cdot \vec{e^\nu}) \cdot \vec{e^\lambda} = \delta^\lambda_\mu## I...
  15. A

    I Transformation rule of contravariant vector

    In a spherical polar coordinate system if the components of a vector given be (r,θ,φ)=1,2,3 respectively. Then the component of the vector along the x-direction of a cartesian coordinate system is $$rsinθcosφ$$. But from the transformation of contravariant vector...
  16. V

    Gauge invariance in GR perturbation theory

    I have been following [this video lecture][1] on how to find gauge invariance when studying the perturbation of the metric. Something is unclear when we try to find fake vs. real perturbation of the metric. We use an arbitrary small vector field to have the effect of a chart transition map or...
  17. Abhishek11235

    A Normal to coordinate curve

    Let $$\phi(x^1,x^2...,x^n) =c$$ be a surface. What is unit Normal to the surface? I know how to find equation of normal to a surface. It is given by: $$\hat{e_{n}}=\frac{\nabla\phi}{|\nabla\phi|}$$ However the answer is given using metric tensor which I am not able to derive. Here is the...
  18. BookWei

    Velocity is a vector in Newtonian mechanics

    I studied the vector analysis in Arfken and Weber's textbook : Mathematical Methods for Physicists 5th edition. In this book they give the definition of vectors in N dimensions as the following: The set of ##N## quantities ##V_{j}## is said to be the components of an N-dimensional vector ##V##...
  19. Sayak Das

    Finding the inverse metric tensor from a given line element

    Defining dS2 as gijdxidxj and given dS2 = (dx1)2 + (dx2)2 + 4(dx1)(dx2). Find gij Now here is my take on the solution: Since the cross terms are present in the line element equation, we can say that it's a non-orthogonal system. So what I did was express the metric tensor in form of a 2x2...
  20. P

    Dust in special relativity - conservation of particle number

    Homework Statement My textbook states: Since the number of particles of dust is conserved we also have the conservation equation $$\nabla_\mu (\rho u^\mu)=0$$ Where ##\rho=nm=N/(\mathrm{d}x \cdot \mathrm{d}y \cdot \mathrm{d}z) m## is the mass per infinitesimal volume and ## (u^\mu) ## is...
  21. saadhusayn

    I Transformation of covariant vector components

    Riley Hobson and Bence define covariant and contravariant bases in the following fashion for a position vector $$\textbf{r}(u_1, u_2, u_3)$$: $$\textbf{e}_i = \frac{\partial \textbf{r}}{\partial u^{i}} $$ And $$ \textbf{e}^i = \nabla u^{i} $$ In the primed...
  22. W

    Calculus Vector Analysis and Cartesian Tensors by Bourne and Kendall

    I have to do a teaching assistant job on a multivariable calculus class, I have to survey books that can be useful as resources. Has anyone used this book by Bourne and Kendall? I noticed that the treatment of vector analysis seems good and the chapter on Cartesian tensors seem to be a good...
  23. arpon

    I Contraction of mixed tensor

    Is that true in general and why: $$A^{mn}_{.~.~lm}=A^{nm}_{.~.~ml}$$
  24. M

    Vector Calculus - Tensor Identity Problem

    Homework Statement Homework Equations The Attempt at a Solution I am really lost here because our professor gave us no example problems leading up to the final exam and now we are expected to understand everything about vector calculus. This is my attempt at the cross product and...
  25. W

    Geometry Tensors and Manifolds by Wasserman

    I would like to know at what level is the book Tensors and Manifolds by Wasserman is pitched and what are the prerequisites of this book? Given the prerequisites, at what level should it be (please give examples of books)? If anyone has used this book can you please kindly give your comments and...
  26. Jianphys17

    Differential Geometry book with tensor calculus

    Hi, there is a book of dg of surfaces that is also about tensor calculus ? Currently i study with Do Carmo, but i am looking for a text that there is also the tensor calculus! Thank you in advance
  27. BiGyElLoWhAt

    I Exploring Curvature

    Here's what I'm watching: At about 1:35:00 he leaves it to us to look at a parallel transport issue. Explicitly to caclculate ##D_s D_r T_m - D_r D_s T_m## And on the last term I'm having some difficulties, the second christoffel symbol. So we have ##D_s [ \partial_r T_m - \Gamma_{rm}^t T_t]##...
  28. W

    Riemann tensor given the space/metric

    Homework Statement Given two spaces described by ##ds^2 = (1+u^2)du^2 + (1+4v^2)dv^2 + 2(2v-u)dudv## ##ds^2 = (1+u^2)du^2 + (1+2v^2)dv^2 + 2(2v-u)dudv## Calculate the Riemann tensor Homework Equations Given the metric and expanding it ##~~~g_{τμ} = η_{τμ} + B_{τμ,λσ}x^λx^σ + ...## We have...
  29. W

    Covariant derivative of vector fields on the sphere

    Homework Statement Given two vector fields ##W_ρ## and ##U^ρ## on the sphere (with ρ = θ, φ), calculate ##D_v W_ρ## and ##D_v U^ρ##. As a small check, show that ##(D_v W_ρ)U^ρ + W_ρ(D_v U^ρ) = ∂_v(W_ρU^ρ)## Homework Equations ##D_vW_ρ = ∂_vW_ρ - \Gamma_{vρ}^σ W_σ## ##D_vU^ρ = ∂_vU^ρ +...
  30. W

    Locally flat coordinates on the Poincaré half plane

    Homework Statement Find the locally flat coordinates on the Poincaré half plane. Problem I.6.4 by A. Zee Homework Equations [/B] Poincaré Metric: ##ds^2 = \frac{dx^2 + dy^2}{y^2}## The Attempt at a Solution First, I'm having problems with the explanation in Zee's book. He said that we can...
  31. W

    Find the coordinate transformation given the metric

    Homework Statement Given the line element ##ds^2## in some space, find the transformation relating the coordinates ##x,y ## and ##\bar x, \bar y##. Homework Equations ##ds^2 = (1 - \frac{y^2}{3}) dx^2 + (1 - \frac{x^2}{3}) dy^2 + \frac{2}{3}xy dxdy## ##ds^2 = (1 + (a\bar x + c\bar y)^2) d\bar...
  32. W

    Metric for the construction of Mercator map

    Homework Statement The familiar Mercator map of the world is obtained by transforming spherical coordinates θ , ϕ to coordinates x , y given by ##x = \frac{W}{2π} φ, y = -\frac{W}{2π} log (tan (\frac{Θ}{2}))## Show that ##ds^2 = Ω^2(x,y) (dx^2 + dy^2)## and find ##Ω## Homework Equations...
  33. W

    Prove the transformation is scalar

    Homework Statement 1.) Prove that the infinitesimal volume element d3x is a scalar 2.) Let Aijk be a totally antisymmetric tensor. Prove that it transforms as a scalar. Homework Equations The Attempt at a Solution [/B] 1.) Rkh = ∂x'h/∂xk By coordinate transformation, x'h = Rkh xk dx'h =...
  34. W

    Construction of an affine tensor of rank 4

    Homework Statement In En the quantities Bij are the components of an affine tensor of rank 2. Construct two affine tensors each of rank 4, with components Cijkl and Dijkl for which ∑k ∑l Cijkl Bkl = Bij + Bji ∑k ∑l Dijkl Bkl = Bij - Bji are identities. Homework Equations The Attempt at a...
  35. R

    Spin coefficient transformation for null rotation with $l$ fixed

    In Newmann-Penrose formalism, a Null rotation with ##l## fixed is $$l^a−>l^a\\ n^a−>n^a+\bar{c}m^a+c\bar{m}^a+c\bar{c}l^a\\ m^a−>m^a+cl^a\\ \bar{m}^a−>\bar{m}^a+\bar{c}l^a$$ Using this transformation, how to prove? $$π−>π+2\bar{c}ϵ+\bar{c}^2κ+D\bar{c}$$ Ref: 2-Spinors by P.O'Donell, p.no, 65
  36. K

    Transformation rule for product of 3rd, 2nd order tensors

    1. Problem statement: Assume that u is a vector and A is a 2nd-order tensor. Derive a transformation rule for a 3rd order tensor Zijk such that the relation ui = ZijkAjk remains valid after a coordinate rotation. Homework Equations : [/B] Transformation rule for 3rd order tensors: Z'ijk =...
  37. D

    Deriving component form of Riemann tensor in general frame

    How does one derive the general form of the Riemann tensor components when it is defined with respect to the Levi-Civita connection? I assumed it was just a "plug-in and play" situation, however I end up with extra terms that don't agree with the form I've looked up in a book. In a general...
  38. L

    Classical I need a fluid mechanics textbook

    Hello, everyone, please forgive me for my poor English. I'm a sophomore, major in Astronomy. I've finished Hassani's book(Mathematical Physics). And I've learned Real variable function and functional analysis (I do not know what exact name of this course) I'd like to buy a textbook with...