MHB Proving the Existence of Constants in a Summation Inequality

Click For Summary
The discussion focuses on proving the existence of constants \( c_m \) in the summation inequality involving the terms \( \sum_{|a| \leq m} |\xi^a|^2 \) and \( (1 + |\xi|^2)^m \). Participants explore the binomial expansion of \( (1 + |\xi|^2)^m \) and its implications for bounding the sums. They clarify the relationship between multi-indices and the summation indices, emphasizing that \( \alpha \) represents a multi-index. The conversation concludes with a consensus on the established inequalities, confirming that \( c_m \) can be defined based on the maximum binomial coefficients involved. The thread effectively resolves the mathematical inquiry regarding the constants in the summation inequality.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

How can we show that there are constants $c_m$ such that:

$$\sum_{|a| \leq m} |\xi^a|^2 \leq (1+ |\xi|^2)^m \leq c_m \sum_{|a| \leq m} |\xi^a|^2$$

Could you give me a hint what we could do?
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

How can we show that there are constants $c_m$ such that:

$$\sum_{|a| \leq m} |\xi^a|^2 \leq (1+ |\xi|^2)^m \leq c_m \sum_{|a| \leq m} |\xi^a|^2$$

Could you give me a hint what we could do?

Hi evinda! (Smile)

What do we get if we expand $(1+ |\xi|^2)^m$ with the binomial expansion? (Wondering)
 
I like Serena said:
Hi evinda! (Smile)

What do we get if we expand $(1+ |\xi|^2)^m$ with the binomial expansion? (Wondering)

$(1+ |\xi|^2)^m= \sum_{k=0}^m \binom{m}{k} (|\xi|^k)^2$

What bound could we use for $\binom{m}{k}$ ?
 
evinda said:
$(1+ |\xi|^2)^m= \sum_{k=0}^m \binom{m}{k} (|\xi|^k)^2$

What bound could we use for $\binom{m}{k}$ ?

$$1 \le \binom{m}{k} \le \binom{m}{\lfloor m/2 \rfloor} \le m!$$
(Thinking)
 
I like Serena said:
$$1 \le \binom{m}{k} \le \binom{m}{\lfloor m/2 \rfloor} \le m!$$
(Thinking)

So we have $(1+ |\xi|^2)^m \leq m! \sum_{k=0}^m (|\xi|^k)^2$.

Is the latter equivalent to $m! \sum_{|\alpha| \leq m} |\xi^{\alpha}|^2$ even if $\alpha$ is a vector?
 
evinda said:
So we have $(1+ |\xi|^2)^m \leq m! \sum_{k=0}^m (|\xi|^k)^2$.

Is the latter equivalent to $m! \sum_{|\alpha| \leq m} |\xi^{\alpha}|^2$ even if $\alpha$ is a vector?

$\alpha$ shouldn't be a vector should it? (Wondering)
I'd expect $\alpha$ to be a number, and since it's used as index for a summation, I expect it to be an integer. (Thinking)
 
I like Serena said:
$\alpha$ shouldn't be a vector should it? (Wondering)
I'd expect $\alpha$ to be a number, and since it's used as index for a summation, I expect it to be an integer. (Thinking)

$\alpha$ is a multi-index, $\alpha=(\alpha_1, \dots, \alpha_n)$ and $|\alpha|=\alpha_1+ \dots+ \alpha_n$.
 
By the multinomial theorem,

$$(1 + |\xi|^2)^m = \sum_{|\beta| = m} \binom{m}{\beta}1^{\beta_0}(\xi_1^2)^{\beta_1}\cdots (\xi_n^2)^{\beta_n} = \sum_{\lvert \beta \rvert = m} \binom{m}{\beta} \lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2$$

where the sum is extended over all multi-indices $\beta\in \Bbb N_0^{n+1}$ with $\lvert \beta \rvert = m$. The index set above contains the multi-indices with first coordinate zero, which corresponds to the multi-indices $\alpha \in \Bbb N_0^n$ with $\lvert \alpha \rvert = n$. Hence, the above sum is greater than or equal to

$$\sum_{\lvert \alpha \rvert = m} \binom{m}{\alpha} \lvert\xi^\alpha \rvert^2 \ge \sum_{\lvert \alpha \rvert = m} \lvert \xi^\alpha\rvert^2$$

On the other hand, for each $(n+1)$-index $\beta = (\beta_0,\beta_1,\ldots, \beta_n)$, the $n$-index $\alpha = (\beta_1,\ldots, \beta_n)$ has $\lvert \alpha\rvert \le m$. Thus

$$\sum_{\lvert \beta \rvert = m} \binom{m}{\beta}\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2 \le \sum_{\lvert \alpha \rvert \le m} \binom{m}{\alpha}|\xi^{\alpha}|^2 \le c_m \sum_{\lvert \alpha\rvert \le m} \lvert\xi^\alpha\rvert^2$$

where $c_m = \max\{\binom{m}{\alpha} : \alpha \in \Bbb N_0^n\}$.

We have now established the estimates

$$\sum_{\lvert \alpha\rvert \le m} \lvert \xi^\alpha\rvert^2 \le (1 + \lvert \xi\rvert^2)^m \le c_m \sum_{\lvert \alpha\rvert \le m} \lvert \xi^\alpha\rvert^2$$

as desired.
 
Euge said:
By the multinomial theorem,

$$(1 + |\xi|^2)^m = \sum_{|\beta| = m} \binom{m}{\beta}1^{\beta_0}(\xi_1^2)^{\beta_1}\cdots (\xi_n^2)^{\beta_n} = \sum_{\lvert \beta \rvert = m} \binom{m}{\beta} \lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2$$

Do we symbolize $1^{\beta_0}(\xi_1^2)^{\beta_1}\cdots (\xi_n^2)^{\beta_n}$ by $\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2$ ?
Euge said:
where the sum is extended over all multi-indices $\beta\in \Bbb N_0^{n+1}$ with $\lvert \beta \rvert = m$. The index set above contains the multi-indices with first coordinate zero, which corresponds to the multi-indices $\alpha \in \Bbb N_0^n$ with $\lvert \alpha \rvert = n$.
Why does it hold that $\lvert \alpha \rvert = n$ and not $\lvert \alpha \rvert = m- \lvert \beta_0 \rvert$ ?
Euge said:
On the other hand, for each $(n+1)$-index $\beta = (\beta_0,\beta_1,\ldots, \beta_n)$, the $n$-index $\alpha = (\beta_1,\ldots, \beta_n)$ has $\lvert \alpha\rvert \le m$. Thus

$$\sum_{\lvert \beta \rvert = m} \binom{m}{\beta}\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2 \le \sum_{\lvert \alpha \rvert \le m} \binom{m}{\alpha}|\xi^{\alpha}|^2 \le c_m \sum_{\lvert \alpha\rvert \le m} \lvert\xi^\alpha\rvert^2$$

where $c_m = \max\{\binom{m}{\alpha} : \alpha \in \Bbb N_0^n\}$.
Why do we deduce from this that $\sum_{\lvert \beta \rvert = m} \binom{m}{\beta}\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2 \le \sum_{\lvert \alpha \rvert \le m} \binom{m}{\alpha}|\xi^{\alpha}|^2 $ and not that $\sum_{\lvert \beta \rvert = m} \binom{m}{\beta}\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2 \geq \sum_{\lvert \alpha \rvert \le m} \binom{m}{\alpha}|\xi^{\alpha}|^2 $ ?
 
  • #10
evinda said:
Do we symbolize $1^{\beta_0}(\xi_1^2)^{\beta_1}\cdots (\xi_n^2)^{\beta_n}$ by $\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2$ ?

No. It follows from the calculation

$$1^{\beta_0}(\xi_1^2)^{\beta_1}\cdots (\xi_n^2)^{\beta_n} = (\xi_1^{\beta_1})^2\cdots (\xi_n^{\beta_n})^2 = \lvert\xi_1^{\beta_1}\cdots \xi_n^{\beta_n}\rvert^2 = \lvert \xi^{(\beta_1,\dots,\beta_n)}\rvert^2$$
Why does it hold that $\lvert \alpha \rvert = n$ and not $\lvert \alpha \rvert = m- \lvert \beta_0 \rvert$ ?

There was a typo there -- it's supposed to be $\lvert \alpha \rvert = m$. Don't forget that we considered all $(n+1)$-indices whose first coordinate is zero, i.e., $\beta_0 = 0$. Also, since $\beta_0\in \Bbb N_0$, it is unnecessary to write $\lvert \beta_0\rvert$ - just write $\beta_0$.

Why do we deduce from this that $\sum_{\lvert \beta \rvert = m} \binom{m}{\beta}\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2 \le \sum_{\lvert \alpha \rvert \le m} \binom{m}{\alpha}|\xi^{\alpha}|^2 $ and not that $\sum_{\lvert \beta \rvert = m} \binom{m}{\beta}\lvert \xi^{(\beta_1,\ldots, \beta_n)}\rvert^2 \geq \sum_{\lvert \alpha \rvert \le m} \binom{m}{\alpha}|\xi^{\alpha}|^2 $ ?

Recall the follows property of summation: If $B$ is a subset of $A$, then

$$\sum_{\alpha\in B} x_\alpha \le \sum_{\alpha\in A} x_{\alpha}$$

The set $A$ of indices $\alpha = (\beta_1,\ldots, \beta_n)$ with $\lvert \alpha\rvert \le m$ contains the set $B$ of indices $\beta = (\beta_0,\beta_1,\ldots,\beta_n)$ with $\lvert \alpha\rvert = m - \beta_0,$ i.e., $\beta_0 + \beta_1 + \cdots + \beta_n = m$, or $\lvert \beta\rvert = m$. So the inequality I wrote follows.
 
  • #11
Euge said:
No. It follows from the calculation

$$1^{\beta_0}(\xi_1^2)^{\beta_1}\cdots (\xi_n^2)^{\beta_n} = (\xi_1^{\beta_1})^2\cdots (\xi_n^{\beta_n})^2 = \lvert\xi_1^{\beta_1}\cdots \xi_n^{\beta_n}\rvert^2 = \lvert \xi^{(\beta_1,\dots,\beta_n)}\rvert^2$$

There was a typo there -- it's supposed to be $\lvert \alpha \rvert = m$. Don't forget that we considered all $(n+1)$-indices whose first coordinate is zero, i.e., $\beta_0 = 0$. Also, since $\beta_0\in \Bbb N_0$, it is unnecessary to write $\lvert \beta_0\rvert$ - just write $\beta_0$.

A ok (Nod)

Euge said:
Recall the follows property of summation: If $B$ is a subset of $A$, then

$$\sum_{\alpha\in B} x_\alpha \le \sum_{\alpha\in A} x_{\alpha}$$

The set $A$ of indices $\alpha = (\beta_1,\ldots, \beta_n)$ with $\lvert \alpha\rvert \le m$ contains the set $B$ of indices $\beta = (\beta_0,\beta_1,\ldots,\beta_n)$ with $\lvert \alpha\rvert = m - \beta_0,$ i.e., $\beta_0 + \beta_1 + \cdots + \beta_n = m$, or $\lvert \beta\rvert = m$. So the inequality I wrote follows.

How can the set $A$ of indices $\alpha = (\beta_1,\ldots, \beta_n)$ with $\lvert \alpha\rvert \le m$ contain the set $B$ of indices $\beta = (\beta_0,\beta_1,\ldots,\beta_n)$ although the indices of the first set contain $n$ components but the second $n+1$ ?
 
  • #12
evinda said:
How can the set $A$ of indices $\alpha = (\beta_1,\ldots, \beta_n)$ with $\lvert \alpha\rvert \le m$ contain the set $B$ of indices $\beta = (\beta_0,\beta_1,\ldots,\beta_n)$ although the indices of the first set contain $n$ components but the second $n+1$ ?

Let me be more precise, and this time I'll write out the summations so you can keep track.

$$\sum_{\lvert \beta\rvert = m} \binom{m}{\beta} \lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2 =
\sum_{\beta_0 \le m} \sum_{\lvert (\beta_1,\ldots,\beta_n)\rvert = m - \beta_0} \binom{m}{\beta} \lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2 \frac{1}{\beta_0!}\binom{m}{(\beta_1,\ldots,\beta_n)}\lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2 \le \sum_{\beta_0\le m} \sum_{\lvert \alpha\rvert = m - \beta_0} \binom{m}{\alpha} \lvert \xi^\alpha\rvert^2 = \sum_{\lvert \alpha\rvert \le m} \binom{m}{\alpha} \lvert \xi^{\alpha}\rvert^2$$
 
  • #13
Euge said:
Let me be more precise, and this time I'll write out the summations so you can keep track.

$$\sum_{\lvert \beta\rvert = m} \binom{m}{\beta} \lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2 =
\sum_{\beta_0 \le m} \sum_{\lvert (\beta_1,\ldots,\beta_n)\rvert = m - \beta_0} \binom{m}{\beta} \lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2 \frac{1}{\beta_0!}\binom{m}{(\beta_1,\ldots,\beta_n)}\lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2 \le \sum_{\beta_0\le m} \sum_{\lvert \alpha\rvert = m - \beta_0} \binom{m}{\alpha} \lvert \xi^\alpha\rvert^2 = \sum_{\lvert \alpha\rvert \le m} \binom{m}{\alpha} \lvert \xi^{\alpha}\rvert^2$$

How did you get this: $ \frac{1}{\beta_0!}\binom{m}{(\beta_1,\ldots,\beta_n)}\lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2$ at the sum?
 
  • #14
evinda said:
How did you get this: $ \frac{1}{\beta_0!}\binom{m}{(\beta_1,\ldots,\beta_n)}\lvert \xi^{(\beta_1,\ldots,\beta_n)}\rvert^2$ at the sum?

It comes from the identity

$$\binom{m}{\beta} = \frac{1}{\beta_0!} \binom{m}{(\beta_1,\ldots,\beta_n)}$$

To explain the notation on the right, I'm using $\binom{m}{(\beta_1,\ldots,\beta_n)}$ as a shortand for $\frac{m!}{\beta!}$ (remember $\beta! = (\beta_1)!\cdots (\beta_n)!$). This is an extension of the usual meaning of the multinomial coefficient, where it is required that $\beta_1 + \cdots + \beta_n = m$. Sorry for the confusion.

Using the normal notation, the inequality we speak of is

$$\sum_{\lvert \beta\rvert = m} \binom{m}{\beta}\lvert \xi^\beta\rvert^2 \le \sum_{\lvert \alpha\rvert \le m} \frac{m!}{\alpha!}\lvert \xi^\alpha\rvert^2$$
 
  • #15
Euge said:
It comes from the identity

$$\binom{m}{\beta} = \frac{1}{\beta_0!} \binom{m}{(\beta_1,\ldots,\beta_n)}$$

To explain the notation on the right, I'm using $\binom{m}{(\beta_1,\ldots,\beta_n)}$ as a shortand for $\frac{m!}{\beta!}$ (remember $\beta! = (\beta_1)!\cdots (\beta_n)!$). This is an extension of the usual meaning of the multinomial coefficient, where it is required that $\beta_1 + \cdots + \beta_n = m$. Sorry for the confusion.

Using the normal notation, the inequality we speak of is

$$\sum_{\lvert \beta\rvert = m} \binom{m}{\beta}\lvert \xi^\beta\rvert^2 \le \sum_{\lvert \alpha\rvert \le m} \frac{m!}{\alpha!}\lvert \xi^\alpha\rvert^2$$

I got it... Thank you very much! (Smile)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
782
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K