Proving the limit does not exist formally

  • Thread starter Thread starter NATURE.M
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion focuses on the challenge of disproving limits using the epsilon-delta definition in calculus. Participants seek resources and methods for effectively demonstrating that a limit does not exist, emphasizing the complexity of both proving and disproving limits. A specific example is provided, illustrating how to show that the limit of x+2 as x approaches c does not equal c by manipulating the epsilon-delta definition. The conversation highlights the need for a general approach while acknowledging that strategies may vary depending on the limit in question. Overall, the topic underscores the intricacies involved in limit proofs and the importance of understanding the negation of the epsilon-delta statement.
NATURE.M
Messages
298
Reaction score
0
So I've searched around quite a bit, and have been fairly unsuccessful when it comes to finding any sufficient material on disproving a limit using the epsilon delta def. I was wondering if any of you could recommend any good sources for learning how to disprove a limit using epsilon delta.
 
Physics news on Phys.org
Both proving and disproving specific limits, for example to come up with narrow error estimates of the limit value, is generally an extremely tricky business.
 
Recall the definition of ##\lim_{x\rightarrow c}f(x) = l##
$$\forall \epsilon > 0\ \exists\ \delta > 0 \ such\ that\ 0<|x-c|<\delta \implies |f(x) - l| < \epsilon$$
Say that is it not true that ##lim_{x\rightarrow c}f(x) = l## this means
$$\exists \epsilon > 0\ \forall\ \delta > 0\ , there\ is\ x\ satisfying\ 0< |x-c| < \delta \ but\ |f(x) - l| >= \epsilon$$
 
DarthRoni said:
Recall the definition of ##\lim_{x\rightarrow c}f(x) = l##
$$\forall \epsilon > 0\ \exists\ \delta > 0 \ such\ that\ 0<|x-c|<\delta \implies |f(x) - l| < \epsilon$$
Say that is it not true that ##lim_{x\rightarrow c}f(x) = l## this means
$$\exists \epsilon > 0\ \forall\ \delta > 0\ , there\ is\ x\ satisfying\ 0< |x-c| < \delta \ but\ |f(x) - l| >= \epsilon$$

I understand the negation of the epsilon-delta statement, but you could say is there a particular way to approach such a task. When your trying to find an epsilon is there a general procedure you could perform. Or does it really just always change from limit to limit.
 
Here's an example:
Disprove ##\lim_{x \rightarrow c}x+2 = c##
we want to show for some ##\epsilon > 0## then ##\forall \delta>0##
$$|x-c|<\delta \implies |(x+2) - c| >= \epsilon $$
We know
$$|(x+2) - c| = |(x-c) + 2|$$
And let's say $$|x-c|<1$$
Because remember that we are trying to show that there is an x in which the definition falls apart. So,
$$-1 < x -c < 1 \implies |(x-c) + 2| > |-1 + 2| = 1$$
So we can say that any ##\epsilon < 1## works. Notice that I chose |x-c| to be smaller than 2.
HINT: really any ##\epsilon < 2## works
EDIT: Just as arildno said, theses proofs can get REALLY tricky.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 53 ·
2
Replies
53
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K