Hello again Sarrah,
To solve this problem, it suffices to show that
$$\lim_{n\to \infty} \sum_{j = 0}^n \binom{n}{j}\frac{|x - a|^{n+j}}{(n+j)!} = 0.$$
To this end, let $f_n(x;a)$ be the summation expression. Then
$$0 \le f_n(x;a) \le \frac{|x - a|^n}{n!}\sum_{j = 0}^n \binom{n}{j}|x - a|^j = \frac{M^n}{n!},$$
where $M = |x - a|(1 + |x - a|)$. Since $M \ge 0$, $\lim\limits_{n\to \infty} \frac{M^n}{n!} = 0$. Hence, by the squeeze theorem, $\lim\limits_{n\to\infty} f_n(x;a) = 0$.