Proving the preimage of a singleton under f is a singleton for all y

  • Thread starter Thread starter cbarker1
  • Start date Start date
Click For Summary
The discussion revolves around proving that the preimage of a singleton under a function f is also a singleton. The user expresses difficulty in starting the proof and seeks clarification on the definition of preimage. Participants emphasize that if the preimage f^{-1}({y}) is a singleton for all y in Y, then the function f must be a bijection. The conversation highlights the need to demonstrate both surjectivity and injectivity to establish this bijection. Overall, the thread focuses on understanding the foundational concepts necessary for the proof.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Homework Statement
Let #f:X \to Y# be a function. Show that if #f^{-1}({y})# is a singleton for all #y \in Y#.
Relevant Equations
Definition of Preimage is #f^{-1}(B)={ x\in X: f(x) \in B}# where B is a subset of Y.
#f^{-1}({y})={x}#
Dear Everyone,

I have some trouble how to start the proof of this statement. I need to prove the preimage of the singleton under f is the subset of singleton of x and vice versus. My attempt is this:Given y.

So we know that definition of the preimage is when all #x# is in #X# , then #f(x) \in B#.I am lost after these facts.

Thank for any assistance,

Cbarker1
 
Physics news on Phys.org
cbarker1 said:
Homework Statement:: Let #f:X \to Y# be a function. Show that if #f^{-1}({y})# is a singleton for all #y \in Y#.
Relevant Equations:: Definition of Preimage is #f^{-1}(B)={ x\in X: f(x) \in B}# where B is a subset of Y.
#f^{-1}({y})={x}#

Dear Everyone,

I have some trouble how to start the proof of this statement.

I'm not surprised. What is the full statement? Show if ... then?
What if I map the entire set ##X## onto a single point ##y\in Y##?

cbarker1 said:
I need to prove the preimage of the singleton under f is the subset of singleton of x and vice versus. My attempt is this:Given y.

So we know that definition of the preimage is when all #x# is in #X# , then #f(x) \in B#.I am lost after these facts.

Thank for any assistance,

Cbarker1
 
fresh_42 said:
I'm not surprised. What is the full statement? Show if ... then?
What if I map the entire set ##X## onto a single point ##y\in Y##?
The professor was typing quickly and forget then statement. If #f^{-1}({y})# is a singleton for all #y \in Y#, then #f# is bijection.
 
  • Like
Likes Delta2
cbarker1 said:
The professor was typing quickly and forget then statement. If #f^{-1}({y})# is a singleton for all #y \in Y#, then #f# is bijection.
What two things do you have to show for ##f## to be a bijection?
 
Surjectivity and interjectivity
 
cbarker1 said:
Surjectivity and interjectivity
Surjectivity and injectivity, yes. But what does that mean, what do you have to check?
 
cbarker1 said:
Surjectivity and interjectivity
Let's see you prove those.
 

Similar threads

Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K