MHB Proving the Relation between $a,\,b,\,c$ and $x,\,y,\z$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
The discussion focuses on proving the inequality involving positive real numbers \(a, b, c\) and \(x, y, z\) under the condition \(a+x=b+y=c+z=1\). The main goal is to establish that \((abc+xyz)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right) \ge 3\). Participants express varying degrees of confidence in the proposed solutions, with some seeking validation from more experienced contributors. The conversation highlights the complexity of the proof and the importance of collaboration in mathematical problem-solving. Overall, the thread emphasizes the need for rigorous verification of mathematical inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition

$a+x=b+y=c+z=1$

Prove that $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3$$.
 
Mathematics news on Phys.org
anemone said:
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition

$a+x=b+y=c+z=1---(1)$

Prove that $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3--(2)$$.
my solution
expansion of $(2)$ we have :
$\dfrac{xz}{a}+\dfrac{xy}{b}+\dfrac{yz}{c}+\dfrac{ab}{x}+\dfrac{bc}{y}+\dfrac{ac}{z}\\
\geq 6\sqrt[6]{abcxyz}---(3)$
using $AP\geq GP$ on $ (1)(3)$
equality will happen when $a=b=c=x=y=z=0.5$
and $(3)\geq 6\times 0.5=3$
you may check another point with $a=b=c=\dfrac {1}{3} ,x=y=z=\dfrac {2}{3}$
and get $(3)=4.5>3$
 
Last edited:
Albert said:
my solution
expansion of $(2)$ we have :
$\dfrac{xz}{a}+\dfrac{xy}{b}+\dfrac{yz}{c}+\dfrac{ab}{x}+\dfrac{bc}{y}+\dfrac{ac}{z}\\
\geq 6\sqrt[6]{abcxyz}---(3)$
using $AP\geq GP$ on $ (1)(3)$
equality will happen when $a=b=c=x=y=z=0.5$
and $(3)\geq 6\times 0.5=3$
you may check another point with $a=b=c=\dfrac {1}{3} ,x=y=z=\dfrac {2}{3}$
and get $(3)=4.5>3$

Thanks for participating, Albert...I guess your solution works, but I am not that certain, I would be happy and grateful if someone who is more expert can give their two cents here...(Mmm)

My solution:

Rewrite the intended LHS of the inequality strictly in terms of a, b and c, we have:

$x=1-a,\,y=1-b,\,z=1-c$

$$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)$$

$$=\left(abc+(1-a)(1-b)(1-c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(abc+1+ab+bc+ca-(a+b+c)-abc\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(1+ab+bc+ca-(a+b+c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(1-a(1-b)-b(1-c)-c(1-a)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}-1-a(1-b)\left(\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$\,\,\,\,\,\,-1-b(1-c)\left(\frac{1}{a(1-b)}+\frac{1}{c(1-a)}\right)-1-c(1-a)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}\right)$$

$$=\frac{1-b(1-c)-c(1-a)}{a(1-b)}+\frac{1-a(1-b)-c(1-a)}{b(1-c)}+\frac{1-a(1-b)-b(1-c)}{c(1-a)}-3$$

$$=\frac{1-b+bc-c+ca}{a(1-b)}+\frac{1-a+ab-c+ac}{b(1-c)}+\frac{1-a+ab-b+bc}{c(1-a)}-3$$

$$=\frac{1-b-c(1-b)+ca}{a(1-b)}+\frac{1-c-a(1-c)+ab}{b(1-c)}+\frac{1-a-b(1-a)+bc}{c(1-a)}-3$$

$$=\frac{(1-b)(1-c)+ca}{a(1-b)}+\frac{(1-a)(1-c)+ab}{b(1-c)}+\frac{(1-b)(1-a)+bc}{c(1-a)}-3$$

$$=\frac{1-c}{a}+\frac{c}{1-b}+\frac{1-a}{b}+\frac{a}{1-c}+\frac{1-b}{c}+\frac{b}{1-a}-3$$

$$\ge 6\sqrt[6]{\frac{1-c}{a}\cdot \frac{c}{1-b}\cdot\frac{1-a}{b}\cdot\frac{a}{1-c}\cdot\frac{1-b}{c}\cdot\frac{b}{1-a}}-3$$ (By the AM-GM inequality, with $1-a,\,1-b,\,1-c$ are all positive)

$$= 6-3$$

$$= 3$$ (Q.E.D.)

Equality occurs when $$\frac{1-c}{a}=\frac{c}{1-b}=\frac{1-a}{b}=\frac{a}{1-c}=\frac{1-b}{c}=\frac{b}{1-a}.$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K