MHB Proving the Relation between $a,\,b,\,c$ and $x,\,y,\z$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
AI Thread Summary
The discussion focuses on proving the inequality involving positive real numbers \(a, b, c\) and \(x, y, z\) under the condition \(a+x=b+y=c+z=1\). The main goal is to establish that \((abc+xyz)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right) \ge 3\). Participants express varying degrees of confidence in the proposed solutions, with some seeking validation from more experienced contributors. The conversation highlights the complexity of the proof and the importance of collaboration in mathematical problem-solving. Overall, the thread emphasizes the need for rigorous verification of mathematical inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition

$a+x=b+y=c+z=1$

Prove that $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3$$.
 
Mathematics news on Phys.org
anemone said:
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition

$a+x=b+y=c+z=1---(1)$

Prove that $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3--(2)$$.
my solution
expansion of $(2)$ we have :
$\dfrac{xz}{a}+\dfrac{xy}{b}+\dfrac{yz}{c}+\dfrac{ab}{x}+\dfrac{bc}{y}+\dfrac{ac}{z}\\
\geq 6\sqrt[6]{abcxyz}---(3)$
using $AP\geq GP$ on $ (1)(3)$
equality will happen when $a=b=c=x=y=z=0.5$
and $(3)\geq 6\times 0.5=3$
you may check another point with $a=b=c=\dfrac {1}{3} ,x=y=z=\dfrac {2}{3}$
and get $(3)=4.5>3$
 
Last edited:
Albert said:
my solution
expansion of $(2)$ we have :
$\dfrac{xz}{a}+\dfrac{xy}{b}+\dfrac{yz}{c}+\dfrac{ab}{x}+\dfrac{bc}{y}+\dfrac{ac}{z}\\
\geq 6\sqrt[6]{abcxyz}---(3)$
using $AP\geq GP$ on $ (1)(3)$
equality will happen when $a=b=c=x=y=z=0.5$
and $(3)\geq 6\times 0.5=3$
you may check another point with $a=b=c=\dfrac {1}{3} ,x=y=z=\dfrac {2}{3}$
and get $(3)=4.5>3$

Thanks for participating, Albert...I guess your solution works, but I am not that certain, I would be happy and grateful if someone who is more expert can give their two cents here...(Mmm)

My solution:

Rewrite the intended LHS of the inequality strictly in terms of a, b and c, we have:

$x=1-a,\,y=1-b,\,z=1-c$

$$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)$$

$$=\left(abc+(1-a)(1-b)(1-c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(abc+1+ab+bc+ca-(a+b+c)-abc\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(1+ab+bc+ca-(a+b+c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(1-a(1-b)-b(1-c)-c(1-a)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}-1-a(1-b)\left(\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$\,\,\,\,\,\,-1-b(1-c)\left(\frac{1}{a(1-b)}+\frac{1}{c(1-a)}\right)-1-c(1-a)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}\right)$$

$$=\frac{1-b(1-c)-c(1-a)}{a(1-b)}+\frac{1-a(1-b)-c(1-a)}{b(1-c)}+\frac{1-a(1-b)-b(1-c)}{c(1-a)}-3$$

$$=\frac{1-b+bc-c+ca}{a(1-b)}+\frac{1-a+ab-c+ac}{b(1-c)}+\frac{1-a+ab-b+bc}{c(1-a)}-3$$

$$=\frac{1-b-c(1-b)+ca}{a(1-b)}+\frac{1-c-a(1-c)+ab}{b(1-c)}+\frac{1-a-b(1-a)+bc}{c(1-a)}-3$$

$$=\frac{(1-b)(1-c)+ca}{a(1-b)}+\frac{(1-a)(1-c)+ab}{b(1-c)}+\frac{(1-b)(1-a)+bc}{c(1-a)}-3$$

$$=\frac{1-c}{a}+\frac{c}{1-b}+\frac{1-a}{b}+\frac{a}{1-c}+\frac{1-b}{c}+\frac{b}{1-a}-3$$

$$\ge 6\sqrt[6]{\frac{1-c}{a}\cdot \frac{c}{1-b}\cdot\frac{1-a}{b}\cdot\frac{a}{1-c}\cdot\frac{1-b}{c}\cdot\frac{b}{1-a}}-3$$ (By the AM-GM inequality, with $1-a,\,1-b,\,1-c$ are all positive)

$$= 6-3$$

$$= 3$$ (Q.E.D.)

Equality occurs when $$\frac{1-c}{a}=\frac{c}{1-b}=\frac{1-a}{b}=\frac{a}{1-c}=\frac{1-b}{c}=\frac{b}{1-a}.$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top