Proving the Relation between $a,\,b,\,c$ and $x,\,y,\z$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Relation
Click For Summary
SUMMARY

The discussion focuses on proving the inequality $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3$$ under the condition that the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy $a+x=b+y=c+z=1$. Participants share their solutions and seek validation from more experienced contributors, emphasizing the need for rigorous proof techniques in inequality mathematics.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with the AM-GM inequality
  • Knowledge of positive real numbers and their properties
  • Basic skills in mathematical proof techniques
NEXT STEPS
  • Study the AM-GM inequality and its applications in proving inequalities
  • Explore advanced techniques in inequality proofs, such as Cauchy-Schwarz inequality
  • Learn about symmetric sums and their role in algebraic inequalities
  • Investigate the use of Lagrange multipliers in optimization problems
USEFUL FOR

This discussion is beneficial for mathematicians, students studying inequality proofs, and anyone interested in advanced algebraic techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition

$a+x=b+y=c+z=1$

Prove that $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3$$.
 
Mathematics news on Phys.org
anemone said:
Given the positive real numbers $a,\,b,\,c$ and $x,\,y,\,z$ satisfy the condition

$a+x=b+y=c+z=1---(1)$

Prove that $$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)\ge 3--(2)$$.
my solution
expansion of $(2)$ we have :
$\dfrac{xz}{a}+\dfrac{xy}{b}+\dfrac{yz}{c}+\dfrac{ab}{x}+\dfrac{bc}{y}+\dfrac{ac}{z}\\
\geq 6\sqrt[6]{abcxyz}---(3)$
using $AP\geq GP$ on $ (1)(3)$
equality will happen when $a=b=c=x=y=z=0.5$
and $(3)\geq 6\times 0.5=3$
you may check another point with $a=b=c=\dfrac {1}{3} ,x=y=z=\dfrac {2}{3}$
and get $(3)=4.5>3$
 
Last edited:
Albert said:
my solution
expansion of $(2)$ we have :
$\dfrac{xz}{a}+\dfrac{xy}{b}+\dfrac{yz}{c}+\dfrac{ab}{x}+\dfrac{bc}{y}+\dfrac{ac}{z}\\
\geq 6\sqrt[6]{abcxyz}---(3)$
using $AP\geq GP$ on $ (1)(3)$
equality will happen when $a=b=c=x=y=z=0.5$
and $(3)\geq 6\times 0.5=3$
you may check another point with $a=b=c=\dfrac {1}{3} ,x=y=z=\dfrac {2}{3}$
and get $(3)=4.5>3$

Thanks for participating, Albert...I guess your solution works, but I am not that certain, I would be happy and grateful if someone who is more expert can give their two cents here...(Mmm)

My solution:

Rewrite the intended LHS of the inequality strictly in terms of a, b and c, we have:

$x=1-a,\,y=1-b,\,z=1-c$

$$\left(abc+xyz\right)\left(\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}\right)$$

$$=\left(abc+(1-a)(1-b)(1-c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(abc+1+ab+bc+ca-(a+b+c)-abc\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(1+ab+bc+ca-(a+b+c)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\left(1-a(1-b)-b(1-c)-c(1-a)\right)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$=\frac{1}{a(1-b)}+\frac{1}{b(1-c)}+\frac{1}{c(1-a)}-1-a(1-b)\left(\frac{1}{b(1-c)}+\frac{1}{c(1-a)}\right)$$

$$\,\,\,\,\,\,-1-b(1-c)\left(\frac{1}{a(1-b)}+\frac{1}{c(1-a)}\right)-1-c(1-a)\left(\frac{1}{a(1-b)}+\frac{1}{b(1-c)}\right)$$

$$=\frac{1-b(1-c)-c(1-a)}{a(1-b)}+\frac{1-a(1-b)-c(1-a)}{b(1-c)}+\frac{1-a(1-b)-b(1-c)}{c(1-a)}-3$$

$$=\frac{1-b+bc-c+ca}{a(1-b)}+\frac{1-a+ab-c+ac}{b(1-c)}+\frac{1-a+ab-b+bc}{c(1-a)}-3$$

$$=\frac{1-b-c(1-b)+ca}{a(1-b)}+\frac{1-c-a(1-c)+ab}{b(1-c)}+\frac{1-a-b(1-a)+bc}{c(1-a)}-3$$

$$=\frac{(1-b)(1-c)+ca}{a(1-b)}+\frac{(1-a)(1-c)+ab}{b(1-c)}+\frac{(1-b)(1-a)+bc}{c(1-a)}-3$$

$$=\frac{1-c}{a}+\frac{c}{1-b}+\frac{1-a}{b}+\frac{a}{1-c}+\frac{1-b}{c}+\frac{b}{1-a}-3$$

$$\ge 6\sqrt[6]{\frac{1-c}{a}\cdot \frac{c}{1-b}\cdot\frac{1-a}{b}\cdot\frac{a}{1-c}\cdot\frac{1-b}{c}\cdot\frac{b}{1-a}}-3$$ (By the AM-GM inequality, with $1-a,\,1-b,\,1-c$ are all positive)

$$= 6-3$$

$$= 3$$ (Q.E.D.)

Equality occurs when $$\frac{1-c}{a}=\frac{c}{1-b}=\frac{1-a}{b}=\frac{a}{1-c}=\frac{1-b}{c}=\frac{b}{1-a}.$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K