Proving the Squeeze Theorem - Finding Limits Using Squeeze Theorem

  • Context: MHB 
  • Thread starter Thread starter nycmathdad
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary

Discussion Overview

The discussion centers around the application of the Squeeze Theorem to find the limit of the expression lim [x^2 • (1 - cos(1/x)] as x approaches 0. Participants explore the validity of using the theorem in this context, while also addressing the broader concepts of limits and derivatives in calculus.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a method using the Squeeze Theorem, asserting that the limit is 0 based on the inequalities involving cos(1/x).
  • Another participant challenges the application of the Squeeze Theorem, arguing that the multiplication of the bounded function cos(1/x) by x^2 should lead directly to a limit of 0 without the need for the theorem.
  • Several participants emphasize the importance of understanding the concepts of limits and derivatives, suggesting that mathematics should not be learned in a strictly linear fashion.
  • One participant expresses a desire to follow a structured learning path, indicating that they are currently focused on limits before moving on to derivatives.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the necessity of using the Squeeze Theorem in this case. There are competing views on the approach to finding the limit, with some advocating for the theorem and others suggesting it is unnecessary.

Contextual Notes

Participants express differing opinions on the learning process in mathematics, with some advocating for a more conceptual understanding rather than a linear progression through topics.

nycmathdad
Messages
74
Reaction score
0
Use the Squeeze Theorem to find the limit.

lim [x^2 • (1 - cos(1/x)]
x--> 0

Let me see.

-1 ≤ cos (1/x) ≤ 1

-x^2 ≤ x^2 • [1 - cos(1/x)] ≤ x^2

-|x^2| ≤ x^2 • [1 - cos(1/x)] ≤ |x^2|

lim -|x^2| as x tends to 0 = 0.

lim |x^2| as x tends to 0 = 0.
.
By the Squeeze Theorem, [x^2 • (1 - cos(1/x)] was squeezed between the limit of -|x^2| as x tends to 0 and the limit of |x^2| as x tends to 0.

Conclusion:

lim [x^2 •(1 - cos(1/x)] = 0
x--> 0

The limit is 0.

Correct?
 
Physics news on Phys.org
Beer soaked ramblings follow.
nycmathdad said:
...
-1 ≤ cos (1/x) ≤ 1

-x^2 ≤ x^2 • [1 - cos(1/x)] ≤ x^2
...
Does not follow.

Multiplying -1 ≤ cos (1/x) ≤ 1 by x^2 yields -x^2 ≤ x^2[cos (1/x)] ≤ x^2
not -x^2 ≤ x^2 • [1 - cos(1/x)] ≤ x^2
 
Last edited:
nycmathdad said:
Use the Squeeze Theorem to find the limit.

lim [x^2 • (1 - cos(1/x)]
x--> 0

Let me see.

-1 ≤ cos (1/x) ≤ 1

-x^2 ≤ x^2 • [1 - cos(1/x)] ≤ x^2

-|x^2| ≤ x^2 • [1 - cos(1/x)] ≤ |x^2|

lim -|x^2| as x tends to 0 = 0.

lim |x^2| as x tends to 0 = 0.
.
By the Squeeze Theorem, [x^2 • (1 - cos(1/x)] was squeezed between the limit of -|x^2| as x tends to 0 and the limit of |x^2| as x tends to 0.

Conclusion:

lim [x^2 •(1 - cos(1/x)] = 0
x--> 0

The limit is 0.

Correct?

There's no need to use the Squeeze Theorem here at all. The product of a bounded function and a function going to 0 has a limit of 0.
 
Prove It said:
There's no need to use the Squeeze Theorem here at all. The product of a bounded function and a function going to 0 has a limit of 0.

Brother, using the Squeeze Theorem here makes sense because I am learning one chapter, one section at a time. Understand? I can use the derivative to solve many of the limit problems but I am currently at the end of Chapter 1, which is all about limits at the Calculus 1 level. Chapter 2 introduces the derivative idea at its basic level. Work with me here. Travel with me one chapter, one section at a time.
 
nycmathdad said:
Brother, using the Squeeze Theorem here makes sense because I am learning one chapter, one section at a time. Understand? I can use the derivative to solve many of the limit problems but I am currently at the end of Chapter 1, which is all about limits at the Calculus 1 level. Chapter 2 introduces the derivative idea at its basic level. Work with me here. Travel with me one chapter, one section at a time.

Then you can take what I said as something new you have learnt. Be grateful.
 
Also, there is NOTHING here about using a derivative.

A limit is a statement of the behaviour of a function in a local neighbourhood of a specific point.

A derivative is an instantaneous rate of change of a function.

Mathematics is not something to learn in a linear fashion, it's a connected network of concepts that link together. Understand the concepts and then the mathematics will be manageable.
 
Prove It said:
Also, there is NOTHING here about using a derivative.

A limit is a statement of the behaviour of a function in a local neighbourhood of a specific point.

A derivative is an instantaneous rate of change of a function.

Mathematics is not something to learn in a linear fashion, it's a connected network of concepts that link together. Understand the concepts and then the mathematics will be manageable.

I thank you for the insight.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K