Proving the Uniform Distribution of Y from Independent Random Variables X

Click For Summary
SUMMARY

The discussion centers on proving the uniform distribution of the random variable Y, defined as Y = ∑(2^(-n) * X_n), where X_n are independent identically distributed random variables with distribution P{X_i=0} = 1 - P{X_i=1} = p. It is established that if p = 1/2, Y is uniformly distributed over the interval [0,1]. Conversely, if p ≠ 1/2, the distribution function of Y is continuous but singular with respect to the Lebesgue measure, indicating it is not absolutely continuous.

PREREQUISITES
  • Understanding of independent identically distributed (i.i.d.) random variables
  • Knowledge of probability distribution functions (p.d.f.)
  • Familiarity with the concept of Lebesgue measure
  • Basic principles of Fourier transforms in probability theory
NEXT STEPS
  • Study the properties of uniform distributions in probability theory
  • Learn about singular distributions and their characteristics
  • Explore the application of Fourier transforms in analyzing random variables
  • Investigate convergence of infinite products in probability distributions
USEFUL FOR

This discussion is beneficial for statisticians, mathematicians, and data scientists interested in the behavior of random variables, particularly in understanding distribution properties and convergence in probability theory.

bennyzadir
Messages
17
Reaction score
0
Let be $X_1, X_2, ..., X_n, ... $ independent identically distributed random variables with mutual distribution $ \mathbb{P}\{X_i=0\}=1-\mathbb{P}\{X_i=1\}=p $. Let be $ Y:= \sum_{n=1}^{\infty}2^{-n}X_n$.
a) Prove that if $p=\frac{1}{2}$ then Y is uniformly distributed on interval [0,1].
b) Show that if $p \neq \frac{1}{2}$ then the distribution function of random variable Y is continuous but not absolutely continuous and it is singular (i.e. singular with respect to the Lebesque measure, i.e with respect to the uniform distribution).

I would really appreciate if you could help me!
Thank you in advance!
 
Physics news on Phys.org
zadir said:
Let be $X_1, X_2, ..., X_n, ... $ independent identically distributed random variables with mutual distribution $ \mathbb{P}\{X_i=0\}=1-\mathbb{P}\{X_i=1\}=p $. Let be $ Y:= \sum_{n=1}^{\infty}2^{-n}X_n$.
a) Prove that if $p=\frac{1}{2}$ then Y is uniformly distributed on interval [0,1].
b) Show that if $p \neq \frac{1}{2}$ then the distribution function of random variable Y is continuous but not absolutely continuous and it is singular (i.e. singular with respect to the Lebesque measure, i.e with respect to the uniform distribution).
I would really appreciate if you could help me!
Thank you in advance!

If You set $\varphi_{n}(x)$ the p.d.f. of each $X_{n}$ and set $\Phi_{n}(\omega)=\mathcal {F} \{\varphi_{n}(x)\}$ You have that the p.d.f. of $\displaystyle Y=\sum_{n=1}^{\infty} 2^{-n}\ X_{n}$ is...

$\displaystyle \Phi(\omega)= \prod_{n=1}^{\infty} \Phi_{n}(\omega)$ (1)

If $p=\frac{1}{2}$ is...

$\displaystyle \varphi_{n} (x)= \frac{1}{2}\ \delta(x) + \frac{1}{2}\ \delta(x-\frac{1}{2^{n}}) \implies \Phi_{n}(\omega)= e^{- i \frac{\omega}{2^{n+1}}}\ \cos \frac {\omega}{2^{n}}$ (2)

Now You have to remember that is...

$\displaystyle \frac{\sin \omega}{\omega}= \prod_{n=1}^{\infty} \cos \frac{\omega}{2^{n}}$ (3)

... to obtain from (1) and (2)...

$\displaystyle \Phi(\omega)= e^{-i\ \frac{\omega}{2}}\ \frac{\sin \omega}{\omega}$ (4)

... so that Y is uniformly distributed between 0 and 1...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thank you for your answer. Do you have any idea for part b) ?
 
If $p \ne \frac{1}{2}$ the task becomes a little more complex. In that case You have...

$\displaystyle \varphi_{n}(x)= p\ \delta(x) + (1-p)\ \delta (x-\frac{1}{2^{n}}) \implies \Phi_{n} (\omega)= (1-p)\ e^{- i \frac{\omega}{2^{n}}}\ (1+ \frac{p}{1-p}\ e^{i \frac{\omega}{2^{n}}})$ (1)

... and now You have to valuate the 'infinite product'...

$\displaystyle \Phi(\omega)= \prod_{n=1}^{\infty} \Phi_{n}(\omega)$ (2)

What You can demonstrate is that the infinite product (2) converges because converges the term...

$\displaystyle \prod_{n=1}^{\infty} (1+ \frac{p}{1-p}\ e^{i \frac{\omega}{2^{n}}})$ (3)

... and that is true because converges the series...

$\displaystyle \sum_{n=1}^{\infty} e^{i \frac{\omega}{2^{n}}}$ (4)

The effective computation of (2) is a different task that requires a little of efforts...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K