Proving the Uniform Distribution of Y from Independent Random Variables X

Click For Summary

Discussion Overview

The discussion revolves around the properties of the random variable Y, defined as the sum of independent identically distributed random variables X_n, specifically focusing on its distribution when the probability p of X_n taking the value 1 is either 1/2 or not. The scope includes theoretical exploration of probability distributions and their characteristics.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that if p = 1/2, then Y is uniformly distributed on the interval [0,1].
  • Others argue that if p ≠ 1/2, the distribution function of Y is continuous but not absolutely continuous, and is singular with respect to the Lebesgue measure.
  • A participant presents a mathematical derivation involving the product of characteristic functions to support the claim of uniform distribution when p = 1/2.
  • Another participant discusses the complexity introduced when p ≠ 1/2, suggesting that the infinite product of characteristic functions converges under certain conditions.
  • There is a request for further assistance regarding the proof for the case when p ≠ 1/2.

Areas of Agreement / Disagreement

Participants generally agree on the properties of Y when p = 1/2, but there is ongoing discussion and uncertainty regarding the case when p ≠ 1/2, with no consensus reached on the specifics of the distribution.

Contextual Notes

The discussion includes mathematical expressions and derivations that may depend on specific assumptions about the convergence of series and products, which are not fully resolved within the thread.

bennyzadir
Messages
17
Reaction score
0
Let be $X_1, X_2, ..., X_n, ... $ independent identically distributed random variables with mutual distribution $ \mathbb{P}\{X_i=0\}=1-\mathbb{P}\{X_i=1\}=p $. Let be $ Y:= \sum_{n=1}^{\infty}2^{-n}X_n$.
a) Prove that if $p=\frac{1}{2}$ then Y is uniformly distributed on interval [0,1].
b) Show that if $p \neq \frac{1}{2}$ then the distribution function of random variable Y is continuous but not absolutely continuous and it is singular (i.e. singular with respect to the Lebesque measure, i.e with respect to the uniform distribution).

I would really appreciate if you could help me!
Thank you in advance!
 
Physics news on Phys.org
zadir said:
Let be $X_1, X_2, ..., X_n, ... $ independent identically distributed random variables with mutual distribution $ \mathbb{P}\{X_i=0\}=1-\mathbb{P}\{X_i=1\}=p $. Let be $ Y:= \sum_{n=1}^{\infty}2^{-n}X_n$.
a) Prove that if $p=\frac{1}{2}$ then Y is uniformly distributed on interval [0,1].
b) Show that if $p \neq \frac{1}{2}$ then the distribution function of random variable Y is continuous but not absolutely continuous and it is singular (i.e. singular with respect to the Lebesque measure, i.e with respect to the uniform distribution).
I would really appreciate if you could help me!
Thank you in advance!

If You set $\varphi_{n}(x)$ the p.d.f. of each $X_{n}$ and set $\Phi_{n}(\omega)=\mathcal {F} \{\varphi_{n}(x)\}$ You have that the p.d.f. of $\displaystyle Y=\sum_{n=1}^{\infty} 2^{-n}\ X_{n}$ is...

$\displaystyle \Phi(\omega)= \prod_{n=1}^{\infty} \Phi_{n}(\omega)$ (1)

If $p=\frac{1}{2}$ is...

$\displaystyle \varphi_{n} (x)= \frac{1}{2}\ \delta(x) + \frac{1}{2}\ \delta(x-\frac{1}{2^{n}}) \implies \Phi_{n}(\omega)= e^{- i \frac{\omega}{2^{n+1}}}\ \cos \frac {\omega}{2^{n}}$ (2)

Now You have to remember that is...

$\displaystyle \frac{\sin \omega}{\omega}= \prod_{n=1}^{\infty} \cos \frac{\omega}{2^{n}}$ (3)

... to obtain from (1) and (2)...

$\displaystyle \Phi(\omega)= e^{-i\ \frac{\omega}{2}}\ \frac{\sin \omega}{\omega}$ (4)

... so that Y is uniformly distributed between 0 and 1...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thank you for your answer. Do you have any idea for part b) ?
 
If $p \ne \frac{1}{2}$ the task becomes a little more complex. In that case You have...

$\displaystyle \varphi_{n}(x)= p\ \delta(x) + (1-p)\ \delta (x-\frac{1}{2^{n}}) \implies \Phi_{n} (\omega)= (1-p)\ e^{- i \frac{\omega}{2^{n}}}\ (1+ \frac{p}{1-p}\ e^{i \frac{\omega}{2^{n}}})$ (1)

... and now You have to valuate the 'infinite product'...

$\displaystyle \Phi(\omega)= \prod_{n=1}^{\infty} \Phi_{n}(\omega)$ (2)

What You can demonstrate is that the infinite product (2) converges because converges the term...

$\displaystyle \prod_{n=1}^{\infty} (1+ \frac{p}{1-p}\ e^{i \frac{\omega}{2^{n}}})$ (3)

... and that is true because converges the series...

$\displaystyle \sum_{n=1}^{\infty} e^{i \frac{\omega}{2^{n}}}$ (4)

The effective computation of (2) is a different task that requires a little of efforts...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K