MHB P's question at Yahoo Answers (Determinant of order n)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The discussion centers on finding the determinant of an n x n matrix with a specific pattern of "1s" from the bottom left to the upper right corner. A well-known property of determinants is used to derive the equation, showing that the determinant can be expressed recursively. The final formula for the determinant is given as Δ_n = (-1)^{(n^2+3n-4)/2}. This formula accounts for the alternating signs based on the matrix's size. The conversation provides a mathematical approach to solving the original query about the determinant's value.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

okay so I need the equation of a determinate matrix that is nxn and has the number "1" from the bottom left corner to the upper right corner for any nxn matrix. to it would be something like [0,0,1] for the top row, [0,1,0] for the second row, and [1,0,0] for the bottom row. any help would be appreciated!

Here is a link to the question:

Matrix with determinates? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello p,

Using a well known determinant's property: $$\Delta_k=\begin{vmatrix} 0 & 0 & \ldots & 0 & 1\\ 0 & 0 & \ldots & 1 & 0 \\ \vdots&&&&\vdots \\ 0 & 1 &\ldots & 0 & 0\\\boxed{1} & 0 &\ldots & 0 & 0\end{vmatrix}=(-1)^{k+1}\begin{vmatrix} 0 & \ldots & 0 & 1\\ 0 & \ldots & 1 & 0 \\ \vdots&&&\vdots \\ 1 &\ldots & 0 & 0\end{vmatrix}=(-1)^{k+1}\Delta_{k-1}$$ Reiterating: $$\begin{aligned}\Delta_n&=(-1)^{n+1}\Delta_{n-1}\\&=(-1)^{n+1}(-1)^{n}\Delta_{n-2}\\&=(-1)^{n+1}(-1)^{n}(-1)^{n-1}\Delta_{n-3}\\&\ldots\\&=(-1)^{n+1}(-1)^{n}(-1)^{n-1}\; \ldots\; (-1)^4\Delta_{2}\\&=(-1)^{n+1}(-1)^{n}(-1)^{n-1}\;\ldots\; (-1)^4\begin{vmatrix}{0}&{1}\\{1}&{0}\end{vmatrix}\\&=(-1)^{n+1}(-1)^{n}(-1)^{n-1}\;\ldots\; (-1)^4(-1)^3\\&=(-1)^{(n+1)+n+(n-1)+\ldots +3}
\end{aligned}$$
We have the sum of the terms of an arithmetic progression $$(n+1)+n+(n-1)+\ldots +3=\dfrac{3+(n+1)}{2}(n-1)=\dfrac{(n+4)(n-1)}{2}
$$ So, $\boxed{\:\Delta_n=(-1)^{(n^2+3n-4)/2}\;}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K