MHB Quadratic form, determine the surface

vincentvance
Messages
8
Reaction score
0
Hi,

I'm trying to solve this problem and I'm stuck.

What I want to do is determine the kind of surface from this equation:

x2-2y2-3z2-4xy-2xz-6yz = 11

Matrix representation:

1 -2 -1
-2 -2 -3
-1 -3 -3

I want to find the eigenvalues so I write the characteristic equation like this:

1-\lambda -2 -1
-2 -2-\lambda -3
-1 -3 -3-\lambda

(and the goal, of course, is to have this equal to zero to find the eigenvalues - lambda)

Then I want to reduce this to a 2x2 matrix and that's where I get stuck. I've done about 10 other problems similar to this one today and never did I get stuck at this point before, it makes me feel very confused.

Can anyone help me?
Thank you
Vincent
 
Physics news on Phys.org
Hi, and welcome to the forum.

vincentvance said:
1-\lambda -2 -1
-2 -2-\lambda -3
-1 -3 -3-\lambda

(and the goal, of course, is to have this equal to zero to find the eigenvalues - lambda)

Then I want to reduce this to a 2x2 matrix and that's where I get stuck.
I would swap the last two lines (this changes the sign of the determinant) and eliminate the leading $-2$ by subtracting double of line $\begin{pmatrix}-1&-3&-3-\lambda\end{pmatrix}$ from line $\begin{pmatrix}-2&-2-\lambda&-3\end{pmatrix}$.
\[
\begin{pmatrix}
1-\lambda&-2&-1\\
-2&-2-\lambda&-3\\
-1&-3&-3-\lambda
\end{pmatrix}
\mapsto
\begin{pmatrix}
1-\lambda&-2&-1\\
-1&-3&-3-\lambda\\
0&4-\lambda&3+2\lambda
\end{pmatrix}
\]
Then I would expand the determinant along the first column.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top