Quantum Mechanics Question - Photon-Proton Collision

Click For Summary
SUMMARY

The discussion centers on the maximum energy loss of a 100-MeV photon colliding with a proton at rest, analyzed through conservation of momentum and energy principles. The maximum energy loss occurs during a head-on collision, leading to the derived formula: ΔE = (pγ - |p'γ|)c = (2pγ²)/(mp(1 + (2pγ)/(mpc))). The final momentum of the proton remains zero in this scenario, indicating no energy transfer to the proton. The calculations confirm that the photon loses energy based on its initial momentum and the mass of the proton.

PREREQUISITES
  • Understanding of conservation of momentum and energy in particle physics
  • Familiarity with photon and proton properties, including mass (mp) and speed of light (c)
  • Knowledge of relativistic momentum and energy equations
  • Ability to manipulate algebraic expressions involving physical constants
NEXT STEPS
  • Study relativistic energy-momentum relations in detail
  • Explore photon interactions with matter, focusing on Compton scattering
  • Learn about particle collision dynamics in high-energy physics
  • Investigate the implications of energy loss in photon-proton collisions on experimental setups
USEFUL FOR

Physicists, students of quantum mechanics, and researchers in particle physics will benefit from this discussion, particularly those interested in photon interactions and energy transfer mechanisms in collisions.

AKG
Science Advisor
Homework Helper
Messages
2,559
Reaction score
4
Quantum Mechanics Question -- Photon-Proton Collision

A 100-MeV photon collides with a proton that is at rest. What is the maximum possible energy loss for the photon?

The subscript "p" refers to proton, and the subscript "\gamma" refers to photon.

The maximum energy loss occurs in a head-on collision, so we can treat the problem as a 1-d one.

By conservation of momentum:

p_{\gamma} + p_{p} = p'_{\gamma} + p'_{p}

p_{\gamma} = p'_{\gamma} + p'_{p}

p'_{p} = p_{\gamma} - p'_{\gamma}

By conservation of energy:

p_{\gamma}c + m_{p}c^2 = |p'_{\gamma}|c + \sqrt{(m_{p}c^2)^2 + (p'_{p})^2c^2}

p_{\gamma}c + m_{p}c^2 = |p'_{\gamma}|c + \sqrt{(m_{p}c^2)^2 + (p_{\gamma} - p'_{\gamma})^2c^2}

Now, if p'_{\gamma} > 0, then:

p_{\gamma}c + m_{p}c^2 = p'_{\gamma}c + \sqrt{(m_{p}c^2)^2 + (p_{\gamma} - p'_{\gamma})^2c^2}

p_{\gamma}c - p'_{\gamma}c + m_{p}c^2 = \sqrt{(m_{p}c^2)^2 + (p_{\gamma} - p'_{\gamma})^2c^2}

(p_{\gamma}c - p'_{\gamma}c + m_{p}c^2)^2 = (m_{p}c^2)^2 + (p_{\gamma} - p'_{\gamma})^2c^2

[(p_{\gamma}c - p'_{\gamma}c) + m_{p}c^2]^2 = (m_{p}c^2)^2 + (p_{\gamma} - p'_{\gamma})^2c^2

(p_{\gamma}c - p'_{\gamma}c)^2 + (m_{p}c^2)^2 + 2(m_{p}c^2)(p_{\gamma}c - p'_{\gamma}c) = (m_{p}c^2)^2 + (p_{\gamma} - p'_{\gamma})^2c^2

2(m_{p}c^2)(p_{\gamma}c - p'_{\gamma}c) = 0

2m_{p}c^3p&#039;_{p} = 0[/itex]<br /> <br /> Which implies the final momentum of the proton is zero, so it stays at rest, and the electron loses no energy. This case clearly doesn&#039;t lead to the greatest possible energy loss, so we should consider the other case, where p&amp;#039;_{\gamma} &amp;lt; 0. Going back to the equation we had and adding in that p&amp;#039;_{\gamma} &amp;lt; 0:<br /> <br /> p_{\gamma}c + m_{p}c^2 = |p&amp;#039;_{\gamma}|c + \sqrt{(m_{p}c^2)^2 + (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2c^2}<br /> <br /> p_{\gamma}c - |p&amp;#039;_{\gamma}|c + m_{p}c^2 = \sqrt{(m_{p}c^2)^2 + (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2c^2}<br /> <br /> c(p_{\gamma} - |p&amp;#039;_{\gamma}|) + m_{p}c^2 = \sqrt{(m_{p}c^2)^2 + (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2c^2}<br /> <br /> [c(p_{\gamma} - |p&amp;#039;_{\gamma}|) + m_{p}c^2]^2 = (m_{p}c^2)^2 + (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2c^2<br /> <br /> c^2(p_{\gamma} - |p&amp;#039;_{\gamma}|)^2 + 2c^3m_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) + (m_{p}c^2)^2 = (m_{p}c^2)^2 + (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2c^2<br /> <br /> (p_{\gamma} - |p&amp;#039;_{\gamma}|)^2 + 2cm_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) + (m_{p}c)^2 = (m_{p}c)^2 + (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2<br /> <br /> (p_{\gamma} - |p&amp;#039;_{\gamma}|)^2 + 2cm_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) = (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2<br /> <br /> 2cm_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) = (p_{\gamma} + |p&amp;#039;_{\gamma}|)^2 - (p_{\gamma} - |p&amp;#039;_{\gamma}|)^2<br /> <br /> 2cm_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) = (p_{\gamma} + |p&amp;#039;_{\gamma}| + p_{\gamma} - |p&amp;#039;_{\gamma}|)(p_{\gamma} + |p&amp;#039;_{\gamma}| - p_{\gamma} + |p&amp;#039;_{\gamma}|)<br /> <br /> 2cm_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) = (2p_{\gamma})(2|p&amp;#039;_{\gamma}|)<br /> <br /> 2cm_{p}(p_{\gamma} - |p&amp;#039;_{\gamma}|) = 4p_{\gamma}|p&amp;#039;_{\gamma}|<br /> <br /> |p&amp;#039;_{\gamma}| = \frac{p_{\gamma}}{1 + \frac{2p_{\gamma}}{m_{p}c}}<br /> <br /> The energy loss of the photon is:<br /> <br /> \Delta E = (p_{\gamma} - |p&amp;#039;_{\gamma}|)c = \frac{2p_{\gamma}^2}{m_{p}(1 + \frac{2p_{\gamma}}{m_{p}c})}<br /> <br /> From the initial energy of the photon (given) I can find the inital momentum (p_{gamma}) and I can look up values for m_{p} and c, so I&#039;m done, right?
 
Physics news on Phys.org
Hi AKG,
I don't understand that step after saying proton final momentum is 0, when you replace proton final momentum with the sum of photon momentum.
$$\sqrt{(mc^2)^2 + (p_p' c)^2}$$
and you replace $$p_p'$$ with $$p_\gamma +|p_\gamma'|$$
Wouldn't the final momentum be just p_\gamma?

Carles,
Thanks
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
10
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K