Chopin
- 367
- 13
Varon said:When I asked this question "Why did you mention about the coulomb potential? Are you giving it as example that it can only be modeled by Hilbert space and not by fourier?" I was only thinking in terms of Sense1. But you didn't reply yes or no. So I thought you were trying to say Fourier is still somehow used in coulomb potential in some way. But now knowing the context that I only meant Sense1. Then your answer is "yes" to the question "Are you giving it as example that it can only be modeled by Hilbert space and not by fourier?", right? Look. English is not my native language, and since I'm a novice in QM. I need a yes or no answer to be definite of my question. So just answer "right" if you are saying that the coulomb potential can only be modeled by Hilbert space and not by Fourier which I only understand use Sense1 which involve sine waves. This is to be 100% sure of your answer before I leave this thread.
No, the solutions to the Coulomb potential cannot be modeled by a Fourier series, since the component solutions aren't sine waves.
In the infinite square well, the solutions are a set of sine waves, so combining them together forms a Fourier series. For the Coulomb potential, the solutions are complicated Bessel functions. You can still add them together, but since they aren't sine waves, it isn't really a Fourier series anymore.
More importantly, though, "Hilbert space" and "Fourier" aren't the same kind of thing, so you can't even really compare them. "Hilbert space" and "wavefunction" are the same kind of thing. Specifically, the wavefunction is just a shorthand for talking about the position basis of the Hilbert space.
Varon said:Hmm... so the words "wave function" always involve the position basis. Can you please give example of QM application that doesn't use the position basis and hence Hilbert Space is used. Maybe coulomb potential is one? What else to get the idea. Now if you no longer use wave function but Hilbert space. What is the proper term for that. For example. What is the replacement for the term "Solve for the wave function"... maybe "solve for the Hilbert space"?, this doesn't seem right. What is the right term to use? Thanks.
The best example of problems that don't involve the position basis are operators with discrete eigenvectors. An easy example is photon polarization. A beam of photons can either be polarized horizontally or vertically. So to describe a photon's polarization, you need a two-dimensional Hilbert space. We can denote a photon that's polarized vertically as |V\rangle, and one that's polarized horizontally as |H\rangle. But a photon can also be in a superposition of horizontal and vertical. We denote this as |V\rangle + |H\rangle.
All of these states are vectors in a two-dimensional Hilbert space that describes the range of polarizations that a photon can have. This sort of problem is impossible to describe using a wavefunction, because there's no way to describe the problem in the position basis. A good text that describes these sorts of problems is the Feynman Lectures--he spends several chapters talking about discrete-valued problems like polarization and spin, and only then moves on to continuous operators like position and momentum.