Quantum Virial Theorem Derivation

  • Thread starter Thread starter flyusx
  • Start date Start date
  • Tags Tags
    Quantum Theorem
Click For Summary

Homework Help Overview

The discussion revolves around the derivation of the quantum virial theorem, focusing on the manipulation of operators and their commutation relations within the context of quantum mechanics. Participants are examining the time derivative of an operator and the implications of simplifying expressions involving the Hamiltonian, position, and momentum operators.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the application of the time derivative of an operator and the expansion of commutators. There are attempts to simplify expressions involving the Hamiltonian and the product of position and momentum operators. Questions arise regarding the correct handling of derivatives and the treatment of operators when acting on wave functions.

Discussion Status

Some participants have provided hints and clarifications regarding the correct forms of operators and the algebra involved. There is acknowledgment of mistakes in simplification and the importance of correctly applying operator identities. Multiple interpretations of the simplification process are being explored, with some participants noting the effectiveness of different approaches.

Contextual Notes

Participants are navigating through the complexities of operator algebra in quantum mechanics, specifically in the context of deriving the virial theorem. There are mentions of potential errors in algebraic manipulation and the need for careful treatment of terms involving wave functions.

flyusx
Messages
64
Reaction score
10
Homework Statement
Using the time-dependence of an operator equation, show that ##\frac{d}{dt}\left\langle\hat{x}\hat{p}\right\rangle=2\langle\widehat{KE}\rangle-\left\langle x\frac{\partial V}{\partial x}\right\rangle##
Relevant Equations
$$\frac{d}{dt}\langle\hat{A}\rangle=\frac{i}{\hbar}\langle[\hat{H},\hat{A}]\rangle+\left\langle\frac{\partial\hat{A}}{\partial t}\right\rangle$$
Using the time derivative of an operator, and expanding out, I got to this:
$$\frac{d}{dt}\langle\hat{x}\hat{p}\rangle=\frac{i}{\hbar}\left\langle\left[\hat{H},\hat{x}\hat{p}\right]\right\rangle+\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle$$
Expanding using ##\langle\psi\vert\text{stuff}\vert\psi\rangle## and noting that the time derivative of ##\hat{x}\hat{p}=0## yields the following integral through all space:
$$\frac{i}{\hbar}\int\psi^{*}\left[\hat{H},\hat{x}\hat{p}\right]\psi\;dx$$
$$\frac{i}{\hbar}\int\psi^{*}\left(\hat{H}\hat{x}\hat{p}-\hat{x}\hat{p}\hat{H}\right)\psi\;dx$$
$$\int\psi^{*}\left(\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)\right)\psi\;dx$$

I have tried to simplify the stuff in between ##\psi^{*}## and ##\psi## (ie calculate the commutator between the Hamiltonian and xp) but I get the following, which is wrong:
$$2\left\langle\widehat{KE}\right\rangle-\left\langle x\frac{\partial V}{\partial x}\right\rangle+\left\langle Vx\frac{\partial}{\partial x}\right\rangle$$
The first two parts are correct, but the very last term is just...strange.
However, when I operate the derivatives on ##\psi##, simplify and then re-pull out the ##\psi##, I get the right answer. It appears that the extraneous term at the very right (with a random partial position derivative) gets cancelled out.

Could someone explain the difference? Is this just me not realising I have to operate on something first? Thanks.
 
Physics news on Phys.org
First of all the momentum operator is ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~## not what you have.

Secondly, it looks like you messed up the algebra and dropped a ##\psi## somewhere. You cannot end up with a dangling operator ##\frac{\partial}{\partial x}## when you start from the integral of function.

Here is a generous hint
First show that $$[\hat x,\hat H]=-\frac{\hbar}{i}\frac{\hat p}{m}~;~~[\hat p,\hat H]=+\frac{\hbar}{i}\frac{\partial V}{\partial x}$$then use it.

Also, remember that ##[AB,C]=A[B,C]+[A,C]B.##
 
flyusx said:
$$\int\psi^{*}\left(\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)\right)\psi\;dx$$
The terms involving ##V## are $$\int \left[\psi^{*}Vx\frac{\partial \psi} {\partial x}-x\frac{\partial}{\partial x}\left(V \psi \right) \right]\;dx$$ Note the second term where the derivative acts on the product ##V \psi##.

The integral will reduce to ## \left\langle -x\frac{\partial V}{\partial x}\right\rangle##. So, your approach will yield the desired result.

However, it is very worthwhile to work it using @kuruman's approach.
 
kuruman said:
First of all the momentum operator is ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~## not what you have.
I think @flyusx did use ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~##, but the ##\dfrac{\hbar}{i}## was cancelled out by the factor ##\dfrac i \hbar## in front of the integral.
 
  • Like
Likes   Reactions: kuruman
TSny said:
I think @flyusx did use ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~##, but the ##\dfrac{\hbar}{i}## was cancelled out by the factor ##\dfrac i \hbar## in front of the integral.
Yes, I don't know how I missed that.
 
Thanks all, I got the correct answer using kuruman's method.
In the future, when commutators are present inside of an integral, is it simply standard to operate them on the ψ instead of directly simplifying them?
 
flyusx said:
Thanks all, I got the correct answer using kuruman's method.
In the future, when commutators are present inside of an integral, is it simply standard to operate them on the ψ instead of directly simplifying them?
Can you show an example of "directly simplifying"? I don't know what it means.
 
kuruman said:
Can you show an example of "directly simplifying"? I don't know what it means.
Yeah.
flyusx said:
$$\frac{i}{\hbar}\int\psi^{*}\left[\hat{H},\hat{x}\hat{p}\right]\psi\;dx$$
$$\frac{i}{\hbar}\int\psi^{*}\left(\hat{H}\hat{x}\hat{p}-\hat{x}\hat{p}\hat{H}\right)\psi\;dx$$
$$\int\psi^{*}\left(\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)\right)\psi\;dx$$
Originally, I tried to simplify the things in the brackets while ignoring ψ* and ψ, which yielded the incorrect answer:
$$\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)$$
$$-\frac{\hbar^{2}}{2m}\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(x\frac{\partial}{\partial x}\right)\right)+Vx\frac{\partial}{\partial x}+\frac{\hbar^{2}}{2m}x\frac{\partial^{3}}{\partial x^{3}}-x\frac{\partial V}{\partial x}$$
$$-\frac{\hbar^{2}}{2m}\frac{\partial}{\partial x}\left(x\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial}{\partial x}\right)+Vx\frac{\partial}{\partial x}+\frac{\hbar^{2}}{2m}x\frac{\partial^{3}}{\partial x^{3}}-x\frac{\partial V}{\partial x}$$
$$-\frac{\hbar^{2}}{2m}\left(x\frac{\partial^{3}}{\partial x^{3}}+2\frac{\partial^{2}}{\partial x^{2}}\right)+Vx\frac{\partial}{\partial x}+\frac{\hbar^{2}}{2m}x\frac{\partial^{3}}{\partial x^{3}}-x\frac{\partial V}{\partial x}$$
$$2\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}\right)+Vx\frac{\partial}{\partial x}-x\frac{\partial V}{\partial x}$$
Where there is the incorrect and extraneous term. Using your method or acting the 'central' stuff on ψ yielded the correct answer. I'm just confused as to why calculating the commutation between the Hamiltonian and the position/momentum and then using the commutation identity works while an issue arises when using the method above.
 
Last edited:
When simplifying a product of operators it's a good idea to consider how the product behaves when acting on an arbitrary state function ##\psi(x)##.

For operators ##A## and ##B##, $$(A \cdot B) \psi(x) \equiv A[B(\psi(x))].$$ Thus, $$\left( \frac {\partial}{\partial x} \cdot V(x) \right) \psi(x) = \frac {\partial}{\partial x} \left[ V(x) \psi(x) \right] =\frac {\partial V(x)}{\partial x} \psi(x) + V(x) \frac {\partial \psi(x)}{\partial x} .$$ This may be written as $$\left( \frac {\partial}{\partial x} \cdot V(x) \right) \psi(x) = \left[ \frac {\partial V(x)}{\partial x} + V(x) \frac {\partial }{\partial x} \right] \psi(x)$$ Since this is to hold for arbitrary ##\psi(x)##, we have the operator identity $$\frac {\partial}{\partial x} \cdot V(x) = \frac {\partial V(x)}{\partial x} + V(x) \frac {\partial }{\partial x}$$

As a little exercise, verify the important commutator ##[\hat x, \hat p] = i \hbar## where ##\hat x = x## and ##\hat p = - i \hbar\frac {\partial}{\partial x}##.
 
  • Like
Likes   Reactions: kuruman
  • #10
You can't do that. You start with an expectation value, which is a constant, and you propose to end up with an operator. It's like mixing birthday cakes and diesel engines.
 
  • #11
Thanks. I've noticed that whenever I operate with respect to ψ, I get the correct answer.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
Replies
24
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K