Quantum Virial Theorem Derivation

  • Thread starter Thread starter flyusx
  • Start date Start date
  • Tags Tags
    Quantum Theorem
Click For Summary
SUMMARY

The forum discussion centers on the derivation of the Quantum Virial Theorem using the time derivative of an operator. The key equation discussed is $$\frac{d}{dt}\langle\hat{x}\hat{p}\rangle=\frac{i}{\hbar}\left\langle\left[\hat{H},\hat{x}\hat{p}\right]\right\rangle+\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle$$. Participants highlight the importance of correctly applying the momentum operator $$\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}$$ and emphasize that simplifications should involve operating on the wave function $$\psi$$ rather than directly manipulating operators. The correct approach leads to the cancellation of extraneous terms, confirming the validity of the derived expressions.

PREREQUISITES
  • Understanding of quantum mechanics and operator algebra
  • Familiarity with the Hamiltonian operator $$\hat{H}$$
  • Knowledge of commutation relations in quantum mechanics
  • Proficiency in calculus, particularly in dealing with derivatives and integrals
NEXT STEPS
  • Study the derivation of the Quantum Virial Theorem in detail
  • Learn about the implications of commutation relations, specifically $$[\hat{x}, \hat{p}] = i \hbar$$
  • Explore the role of the momentum operator $$\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}$$ in quantum mechanics
  • Investigate the application of operator identities in quantum mechanics
USEFUL FOR

Quantum physicists, graduate students in physics, and anyone interested in advanced quantum mechanics and operator theory will benefit from this discussion.

flyusx
Messages
64
Reaction score
10
Homework Statement
Using the time-dependence of an operator equation, show that ##\frac{d}{dt}\left\langle\hat{x}\hat{p}\right\rangle=2\langle\widehat{KE}\rangle-\left\langle x\frac{\partial V}{\partial x}\right\rangle##
Relevant Equations
$$\frac{d}{dt}\langle\hat{A}\rangle=\frac{i}{\hbar}\langle[\hat{H},\hat{A}]\rangle+\left\langle\frac{\partial\hat{A}}{\partial t}\right\rangle$$
Using the time derivative of an operator, and expanding out, I got to this:
$$\frac{d}{dt}\langle\hat{x}\hat{p}\rangle=\frac{i}{\hbar}\left\langle\left[\hat{H},\hat{x}\hat{p}\right]\right\rangle+\left\langle\frac{\partial}{\partial t}\left(\hat{x}\hat{p}\right)\right\rangle$$
Expanding using ##\langle\psi\vert\text{stuff}\vert\psi\rangle## and noting that the time derivative of ##\hat{x}\hat{p}=0## yields the following integral through all space:
$$\frac{i}{\hbar}\int\psi^{*}\left[\hat{H},\hat{x}\hat{p}\right]\psi\;dx$$
$$\frac{i}{\hbar}\int\psi^{*}\left(\hat{H}\hat{x}\hat{p}-\hat{x}\hat{p}\hat{H}\right)\psi\;dx$$
$$\int\psi^{*}\left(\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)\right)\psi\;dx$$

I have tried to simplify the stuff in between ##\psi^{*}## and ##\psi## (ie calculate the commutator between the Hamiltonian and xp) but I get the following, which is wrong:
$$2\left\langle\widehat{KE}\right\rangle-\left\langle x\frac{\partial V}{\partial x}\right\rangle+\left\langle Vx\frac{\partial}{\partial x}\right\rangle$$
The first two parts are correct, but the very last term is just...strange.
However, when I operate the derivatives on ##\psi##, simplify and then re-pull out the ##\psi##, I get the right answer. It appears that the extraneous term at the very right (with a random partial position derivative) gets cancelled out.

Could someone explain the difference? Is this just me not realising I have to operate on something first? Thanks.
 
Physics news on Phys.org
First of all the momentum operator is ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~## not what you have.

Secondly, it looks like you messed up the algebra and dropped a ##\psi## somewhere. You cannot end up with a dangling operator ##\frac{\partial}{\partial x}## when you start from the integral of function.

Here is a generous hint
First show that $$[\hat x,\hat H]=-\frac{\hbar}{i}\frac{\hat p}{m}~;~~[\hat p,\hat H]=+\frac{\hbar}{i}\frac{\partial V}{\partial x}$$then use it.

Also, remember that ##[AB,C]=A[B,C]+[A,C]B.##
 
flyusx said:
$$\int\psi^{*}\left(\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)\right)\psi\;dx$$
The terms involving ##V## are $$\int \left[\psi^{*}Vx\frac{\partial \psi} {\partial x}-x\frac{\partial}{\partial x}\left(V \psi \right) \right]\;dx$$ Note the second term where the derivative acts on the product ##V \psi##.

The integral will reduce to ## \left\langle -x\frac{\partial V}{\partial x}\right\rangle##. So, your approach will yield the desired result.

However, it is very worthwhile to work it using @kuruman's approach.
 
kuruman said:
First of all the momentum operator is ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~## not what you have.
I think @flyusx did use ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~##, but the ##\dfrac{\hbar}{i}## was cancelled out by the factor ##\dfrac i \hbar## in front of the integral.
 
  • Like
Likes   Reactions: kuruman
TSny said:
I think @flyusx did use ##\hat p=\dfrac{\hbar}{i} \dfrac{\partial}{\partial x}~##, but the ##\dfrac{\hbar}{i}## was cancelled out by the factor ##\dfrac i \hbar## in front of the integral.
Yes, I don't know how I missed that.
 
Thanks all, I got the correct answer using kuruman's method.
In the future, when commutators are present inside of an integral, is it simply standard to operate them on the ψ instead of directly simplifying them?
 
flyusx said:
Thanks all, I got the correct answer using kuruman's method.
In the future, when commutators are present inside of an integral, is it simply standard to operate them on the ψ instead of directly simplifying them?
Can you show an example of "directly simplifying"? I don't know what it means.
 
kuruman said:
Can you show an example of "directly simplifying"? I don't know what it means.
Yeah.
flyusx said:
$$\frac{i}{\hbar}\int\psi^{*}\left[\hat{H},\hat{x}\hat{p}\right]\psi\;dx$$
$$\frac{i}{\hbar}\int\psi^{*}\left(\hat{H}\hat{x}\hat{p}-\hat{x}\hat{p}\hat{H}\right)\psi\;dx$$
$$\int\psi^{*}\left(\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)\right)\psi\;dx$$
Originally, I tried to simplify the things in the brackets while ignoring ψ* and ψ, which yielded the incorrect answer:
$$\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)x\frac{\partial}{\partial x}-x\frac{\partial}{\partial x}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}+V\right)$$
$$-\frac{\hbar^{2}}{2m}\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(x\frac{\partial}{\partial x}\right)\right)+Vx\frac{\partial}{\partial x}+\frac{\hbar^{2}}{2m}x\frac{\partial^{3}}{\partial x^{3}}-x\frac{\partial V}{\partial x}$$
$$-\frac{\hbar^{2}}{2m}\frac{\partial}{\partial x}\left(x\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial}{\partial x}\right)+Vx\frac{\partial}{\partial x}+\frac{\hbar^{2}}{2m}x\frac{\partial^{3}}{\partial x^{3}}-x\frac{\partial V}{\partial x}$$
$$-\frac{\hbar^{2}}{2m}\left(x\frac{\partial^{3}}{\partial x^{3}}+2\frac{\partial^{2}}{\partial x^{2}}\right)+Vx\frac{\partial}{\partial x}+\frac{\hbar^{2}}{2m}x\frac{\partial^{3}}{\partial x^{3}}-x\frac{\partial V}{\partial x}$$
$$2\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial x^{2}}\right)+Vx\frac{\partial}{\partial x}-x\frac{\partial V}{\partial x}$$
Where there is the incorrect and extraneous term. Using your method or acting the 'central' stuff on ψ yielded the correct answer. I'm just confused as to why calculating the commutation between the Hamiltonian and the position/momentum and then using the commutation identity works while an issue arises when using the method above.
 
Last edited:
When simplifying a product of operators it's a good idea to consider how the product behaves when acting on an arbitrary state function ##\psi(x)##.

For operators ##A## and ##B##, $$(A \cdot B) \psi(x) \equiv A[B(\psi(x))].$$ Thus, $$\left( \frac {\partial}{\partial x} \cdot V(x) \right) \psi(x) = \frac {\partial}{\partial x} \left[ V(x) \psi(x) \right] =\frac {\partial V(x)}{\partial x} \psi(x) + V(x) \frac {\partial \psi(x)}{\partial x} .$$ This may be written as $$\left( \frac {\partial}{\partial x} \cdot V(x) \right) \psi(x) = \left[ \frac {\partial V(x)}{\partial x} + V(x) \frac {\partial }{\partial x} \right] \psi(x)$$ Since this is to hold for arbitrary ##\psi(x)##, we have the operator identity $$\frac {\partial}{\partial x} \cdot V(x) = \frac {\partial V(x)}{\partial x} + V(x) \frac {\partial }{\partial x}$$

As a little exercise, verify the important commutator ##[\hat x, \hat p] = i \hbar## where ##\hat x = x## and ##\hat p = - i \hbar\frac {\partial}{\partial x}##.
 
  • Like
Likes   Reactions: kuruman
  • #10
You can't do that. You start with an expectation value, which is a constant, and you propose to end up with an operator. It's like mixing birthday cakes and diesel engines.
 
  • #11
Thanks. I've noticed that whenever I operate with respect to ψ, I get the correct answer.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
Replies
24
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K