Question about a function of sets

Click For Summary
SUMMARY

The discussion centers on the properties of functions defined as ##f:X \to X##, specifically examining the validity of four statements regarding the images and preimages of sets A and B, where ##A \subseteq X## and ##B \subseteq X##. The correct statements are (a) ##f(A \cup B) = f(A) \cup f(B)##, (c) ##f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)##, and (d) ##f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)##. Statement (b) ##f(A \cap B) = f(A) \cap f(B)## is incorrect, as demonstrated by a counterexample involving the function defined by ##f(1)=3## and ##f(2)=3##, leading to an empty intersection.

PREREQUISITES
  • Understanding of set theory, including unions and intersections.
  • Familiarity with functions and their properties, specifically images and preimages.
  • Knowledge of the notation for functions, particularly ##f:X \to X##.
  • Basic grasp of bijections and their implications in function properties.
NEXT STEPS
  • Study the properties of images and preimages in set theory.
  • Learn about partial functions and their definitions in mathematical contexts.
  • Explore the concept of bijections and their significance in function analysis.
  • Investigate counterexamples in mathematical proofs to strengthen understanding of function properties.
USEFUL FOR

Mathematics students, educators, and anyone interested in the theoretical aspects of functions and set operations, particularly in the context of advanced algebra and analysis.

ubergewehr273
Messages
139
Reaction score
5
Let a function ##f:X \to X## be defined.
Let A and B be sets such that ##A \subseteq X## and ##B \subseteq X##.
Then which of the following are correct ?
a) ##f(A \cup B) = f(A) \cup f(B)##
b) ##f(A \cap B) = f(A) \cap f(B)##
c) ##f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)##
d) ##f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)##

My attempt-
For option a, let an element ##x \in f(A \cup B)##
##\Leftrightarrow## ##f^{-1}(x) \in A \cup B##
##\Leftrightarrow## ##f^{-1} (x)\in A## or ##f^{-1}(x) \in B##
##\Leftrightarrow## ##x \in f(A)## or ##x \in f(B)##
##\Leftrightarrow## ##x \in f(A) \cup f(B)##
##\Rightarrow## ##f(A \cup B) = f(A) \cup f(B)##

A similar analogy can be applied to options c and d as well.
However, option b doesn't seem to fit into this argument. Even though this approach seems rationale, a counter example can be given to disprove option b. It goes as follows :
Let ##X=\left\{1,2,3 \right\}##, ##A=\left\{1 \right\}## and ##B=\left\{2 \right\}##
Let function ##f## be defined as ##f(1)=3## and ##f(2)=3##
Clearly ##A \cap B = \phi## and hence ##f(A \cap B)## becomes undefined.
Therefore disproving option b.
But option d is correct even though option b is incorrect. Can somebody clarify this for me ?
In simple terms, if option a is right then why not option b (surely there must be some flaw in the above proof when applied for option b but what is it) ? And since option b is incorrect how can option d be correct ?

NOTE: The above question appeared in an exam and the correct answers are options a,c,d.
 
Last edited by a moderator:
Physics news on Phys.org
ubergewehr273 said:
Let a function ##f:X \to X## be defined.
Let A and B be sets such that ##A \subseteq X## and ##B \subseteq X##.
Then which of the following are correct ?
a) ##f(A \cup B) = f(A) \cup f(B)##
b) ##f(A \cap B) = f(A) \cap f(B)##
c) ##f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)##
d) ##f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)##

My attempt-
For option a, let an element ##x \in f(A \cup B)##
##\Leftrightarrow## ##f^{-1}(x) \in A \cup B##
##\Leftrightarrow## ##f^{-1} (x)\in A## or ##f^{-1}(x) \in B##
##\Leftrightarrow## ##x \in f(A)## or ##x \in f(B)##
##\Leftrightarrow## ##x \in f(A) \cup f(B)##
##\Rightarrow## ##f(A \cup B) = f(A) \cup f(B)##

A similar analogy can be applied to options c and d as well.
However, option b doesn't seem to fit into this argument. Even though this approach seems rationale, a counter example can be given to disprove option b. It goes as follows :
Let ##X=\left\{1,2,3 \right\}##, ##A=\left\{1 \right\}## and ##B=\left\{2 \right\}##
Let function ##f## be defined as ##f(1)=3## and ##f(2)=3##
Clearly ##A \cap B = \phi## and hence ##f(A \cap B)## becomes undefined.
Therefore disproving option b.
But option d is correct even though option b is incorrect. Can somebody clarify this for me ?
In simple terms, if option a is right then why not option b (surely there must be some flaw in the above proof when applied for option b but what is it) ? And since option b is incorrect how can option d be correct ?

NOTE: The above question appeared in an exam and the correct answers are options a,c,d.

What you did is correct, besides one detail. ##A \cap B = \emptyset## means that ##f( A \cap B) = \emptyset##. The latter set is not "undefined".

As for why (b) isn't correct and (d) is, this is just because preimage and image are very different concepts. For example, the image of a singelton will be a singelton, while the preimage of a singelton can be the entire domain (if the function is constant).

Preimages behave better than images with respect to set operations, as this exercice shows.
 
  • Like
Likes PeroK
If ##f^{-1}## exists, then ##f## (and ##f^{-1}##) must be one-to-one, which rules out your counterexample.

PS except, of course, ##f^{-1}## means a preimage in this context.
 
  • Like
Likes ubergewehr273
ubergewehr273 said:
Let a function ##f:X \to X## be defined.

How is the notation "##f:X \to X##" defined in your course materials? Does this signify that ##X## is the domain of ##f## ? - or does it include the possibility that the domain of ##f## is a proper subset of ##X##?

If it includes the possibility that the domain of ##f## can be proper subset of ##X## then can we say an empty set of ordered pairs is a function "##X \to X##" ?
 
Stephen Tashi said:
How is the notation "##f:X \to X##" defined in your course materials? Does this signify that ##X## is the domain of ##f## ? - or does it include the possibility that the domain of ##f## is a proper subset of ##X##?

If it includes the possibility that the domain of ##f## can be proper subset of ##X## then can we say an empty set of ordered pairs is a function "##X \to X##" ?

I don't know what the course's definition is, but I would say that ##f## is a function of signature ##X \to X##, then it means that the domain of ##f## is a superset of ##X## (you can further restrict it to say that the domain of ##f## is exactly ##X##, but for most purposes, it doesn't matter whether ##f## is defined for a larger domain that ##X## or not). If you wanted to allow the possibility that ##f## has a domain that may be smaller than ##X##, I would call that a "partial function" on ##X##.
 
As a somewhat-trivial result that helps me with these arguments ( hopefully to you too) , all nice properties hold when you have a bijection, so, in a sense, the results you need to prove are somewhat of a measure of how non-bijective a function is.
 
  • Like
Likes ubergewehr273
Yeah, I got it.
Thanks
 

Similar threads

Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
9
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K