Question about an Eqn. in Shankar - wave function probability

Click For Summary
The discussion centers on the probability expression for measuring an observable in quantum mechanics, specifically questioning why the probability is not proportional to the squared magnitude of the inner product with the projection operator. The explicit form of the projection operator for a non-degenerate eigenvalue is given as ##\mathbb{P}_{\omega} = |\omega\rangle \langle \omega |##, leading to the result that ##\langle \psi | \mathbb{P}_{\omega} | \psi \rangle = |\langle \omega | \psi \rangle |^2##. The conversation also highlights the concept of degeneracy, where multiple linearly independent eigenvectors correspond to the same eigenvalue, forming a subspace in the Hilbert space. The complete probability expression incorporates these eigenvectors, demonstrating that the probability to find the value ##\omega## when measuring the observable is derived from the sum over all eigenstates. This clarifies the relationship between the projection operator and the probability of measurement outcomes in quantum mechanics.
Jacob Nie
Messages
9
Reaction score
4
Homework Statement
The section is about the probability of obtaining a certain ##\omega## upon measurement of operator ##\Omega.## And here it is dealing specifically with the case of a degenerate ##\Omega.##

It says: In general, one can replace in Postulate III
$$P(\omega)\propto \langle \psi | \mathbb{P}_{\omega}|\psi\rangle $$
where ##\mathbb{P}_{\omega}## is the projection operator for the eigenspace with eigenvalue ##\omega.##

(Postulate III was ##P(\omega)\propto |\langle \omega | \psi \rangle |^2.##)
Relevant Equations
n/a
I don't see why it is not ##P(\omega)\propto |\langle \psi | \mathbb{P}_{\omega}|\psi\rangle |^2.## After all, the wavefunction ends up collapsing from ##|\psi\rangle## to ##\mathbb{P}_{\omega}|\psi\rangle.##
 
Physics news on Phys.org
Jacob Nie said:
It says: In general, one can replace in Postulate III
$$P(\omega)\propto \langle \psi | \mathbb{P}_{\omega}|\psi\rangle $$
where ##\mathbb{P}_{\omega}## is the projection operator for the eigenspace with eigenvalue ##\omega.##

I don't see why it is not ##P(\omega)\propto |\langle \psi | \mathbb{P}_{\omega}|\psi\rangle |^2.## After all, the wavefunction ends up collapsing from ##|\psi\rangle## to ##\mathbb{P}_{\omega}|\psi\rangle.##
What is the explicit form of ##\mathbb{P}_{\omega}## when ##\omega## is not degenerate? When this ##\mathbb{P}_{\omega}## is used in ##\left< \psi \right| \mathbb{P}_{\omega} \left|\psi \right> ##, what results?
 
  • Like
Likes Jacob Nie
George Jones said:
What is the explicit form of ##\mathbb{P}_{\omega}## when ##\omega## is not degenerate? When this ##\mathbb{P}_{\omega}## is used in ##\left< \psi \right| \mathbb{P}_{\omega} \left|\psi \right> ##, what results?

The explicit form would be ##\mathbb{P}_{\omega} = |\omega\rangle \langle \omega | \psi \rangle.## So, ##\langle \psi | \mathbb{P}_{\omega}| \psi \rangle = \langle \psi | \omega \rangle \langle \omega | \psi \rangle = |\langle \omega | \psi \rangle |^2.##

Thank you very much for the helpful hint.
 
Now, a projection operator is an operator, not a vector. Let ##\Omega## be an observable, ##\hat{\Omega}## its representing self-adjoint operator. For an eigenvalue ##\omega## there may be several linearly independent eigenvectors ("degeneracy"). They form a subvector space of the Hilbert space, ##\text{Eig}(\hat{\Omega},\omega)##, and you always can choose an orthonormal basis ##|\omega,\alpha \rangle##. For simplicity I assume the ##\alpha## are just discrete labels and we deal with true normalizable eigenvectors. The generalization if you have continuous generalized eigenvectors "normalized to a ##\delta## distribution" is straight forward.

Then the projection operator to the subspace ##\text{Eig}(\hat{\Omega},\omega)## is
$$\hat{P}_{\omega} = \sum_{\alpha} |\omega,\alpha \rangle \langle \omega,\alpha|.$$
Then the probability to find the value ##\omega## when measuring ##\Omega## when the system is prepared in a pure state represented by a normalized state vector ##|\psi \rangle## is, according to Born's postulate,
$$P(\omega|\psi)=\langle \psi|\hat{P}_{\omega}|\psi \rangle=\sum_{\alpha} \langle \psi|\omega,\alpha \rangle \langle \omega,\alpha|\psi \rangle = \sum_{\alpha} |\psi(\omega,\alpha)|^2.$$
 

Similar threads

Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 8 ·
Replies
8
Views
962
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K