Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Question about Bolzano-Weierstrass Theorem Proof

  1. Jan 30, 2015 #1
    1.jpg This is the proof of Serge Lang in Undergraduate Analysis. I can't quite understand what he meant in his proof. I read different sources about the theorem but Lang's proof is quite odd. Any help?
    BTW. theorem 1.1 just states that Every bounded and monotonic sequence is convergent.
     
  2. jcsd
  3. Jan 30, 2015 #2

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    What don't you understand about the proof?
     
  4. Jan 30, 2015 #3
    I don't understand the proof of the Bolzano-Weierstrass Theorem according to Serge Lang...
     
  5. Jan 30, 2015 #4

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    Yes but what about it don't you understand?
     
  6. Jan 30, 2015 #5
    How can Cn be increasing? How can we be sure that the Xn will less than Xn+1???
     
  7. Jan 30, 2015 #6

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    ##C_{n}## is the greatest lower bound of the sequence of ##x_{n}##'s except for the first ##n-1## of them. If you remove some more of the ##x_{n} ##'s then the greatest lower bound can not be less than ##C_{n}##.
     
  8. Jan 30, 2015 #7
    Yes but how can we be sure that Cn+1 will not be less than Cn if ever those Xn's oscillate in a very random manner? For example, if Xn+1 is less than Xn, then Cn+1 is the GLB of the set Xn+1's, and Cn is the GLB of the Xn's but this implies Cn+1 is less than Cn.
     
  9. Jan 30, 2015 #8

    lavinia

    User Avatar
    Science Advisor
    Gold Member

    Because they are greatest lower bounds. It doesn't matter if the X's oscillate. ##C_{n}## is lower than all of them except the first ##n-1##. ##C_{n+1}## is lower than all of them except one less so that one removed might be very low.
     
  10. Jan 30, 2015 #9
    Oh! Now I got it, because I was thinking that Cn's can overlap or surpass the Xn+1's and vice versa... Thanks!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook