- #1
MAGNIBORO
- 106
- 26
Hi, I see a formula of gamma function and i have a question.
(1) $$\Gamma (s) = \int_{0}^{\infty } e^{-x}\, x^{s-1} dx$$
(2) $$ x=a\, n^{p} \rightarrow dx=ap\, n^{p-1}dn$$
(3) $$\frac{\Gamma (s)}{pa^{s}} = \int_{0}^{\infty } e^{-an^{p}}\, n^{ps-1} dn$$
i understand the formula but why works for complex values of a?
i mean the substitution in (2) is valid for ##a > 0## and ##p>0##
Because otherwise the upper limit would be ##\pm \infty \, i ## or ## \infty \ \pm \infty \, i ##
Depending on the value of a.
thanks
(1) $$\Gamma (s) = \int_{0}^{\infty } e^{-x}\, x^{s-1} dx$$
(2) $$ x=a\, n^{p} \rightarrow dx=ap\, n^{p-1}dn$$
(3) $$\frac{\Gamma (s)}{pa^{s}} = \int_{0}^{\infty } e^{-an^{p}}\, n^{ps-1} dn$$
i understand the formula but why works for complex values of a?
i mean the substitution in (2) is valid for ##a > 0## and ##p>0##
Because otherwise the upper limit would be ##\pm \infty \, i ## or ## \infty \ \pm \infty \, i ##
Depending on the value of a.
thanks